Spaces:
Sleeping
Sleeping
from omegaconf.dictconfig import DictConfig | |
from typing import List, Tuple | |
from ema_pytorch import EMA | |
import numpy as np | |
import torch | |
from torchtyping import TensorType | |
import torch.nn as nn | |
import lightning as L | |
from utils.random_utils import StackedRandomGenerator | |
# ------------------------------------------------------------------------------------- # | |
batch_size, num_samples = None, None | |
num_feats, num_rawfeats, num_cams = None, None, None | |
RawTrajectory = TensorType["num_samples", "num_rawfeats", "num_cams"] | |
# ------------------------------------------------------------------------------------- # | |
class Diffuser(L.LightningModule): | |
def __init__( | |
self, | |
network: nn.Module, | |
guidance_weight: float, | |
ema_kwargs: DictConfig, | |
sampling_kwargs: DictConfig, | |
edm2_normalization: bool, | |
**kwargs, | |
): | |
super().__init__() | |
# Network and EMA | |
self.net = network | |
self.ema = EMA(self.net, **ema_kwargs) | |
self.guidance_weight = guidance_weight | |
self.edm2_normalization = edm2_normalization | |
self.sigma_data = network.sigma_data | |
# Sampling | |
self.num_steps = sampling_kwargs.num_steps | |
self.sigma_min = sampling_kwargs.sigma_min | |
self.sigma_max = sampling_kwargs.sigma_max | |
self.rho = sampling_kwargs.rho | |
self.S_churn = sampling_kwargs.S_churn | |
self.S_noise = sampling_kwargs.S_noise | |
self.S_min = sampling_kwargs.S_min | |
self.S_max = ( | |
sampling_kwargs.S_max | |
if isinstance(sampling_kwargs.S_max, float) | |
else float("inf") | |
) | |
# ---------------------------------------------------------------------------------- # | |
def on_predict_start(self): | |
eval_dataset = self.trainer.datamodule.eval_dataset | |
self.modalities = list(eval_dataset.modality_datasets.keys()) | |
self.get_matrix = self.trainer.datamodule.train_dataset.get_matrix | |
self.v_get_matrix = self.trainer.datamodule.eval_dataset.get_matrix | |
def predict_step(self, batch, batch_idx): | |
ref_samples, mask = batch["traj_feat"], batch["padding_mask"] | |
if len(self.modalities) > 0: | |
cond_k = [x for x in batch.keys() if "traj" not in x and "feat" in x] | |
cond_data = [batch[cond] for cond in cond_k] | |
conds = {} | |
for cond in cond_k: | |
cond_name = cond.replace("_feat", "") | |
if isinstance(batch[f"{cond_name}_raw"], dict): | |
for cond_name_, x in batch[f"{cond_name}_raw"].items(): | |
conds[cond_name_] = x | |
else: | |
conds[cond_name] = batch[f"{cond_name}_raw"] | |
batch["conds"] = conds | |
else: | |
cond_data = None | |
# cf edm2 sigma_data normalization / https://arxiv.org/pdf/2312.02696.pdf | |
if self.edm2_normalization: | |
ref_samples *= self.sigma_data | |
_, gen_samples = self.sample(self.ema.ema_model, ref_samples, cond_data, mask) | |
batch["ref_samples"] = torch.stack([self.v_get_matrix(x) for x in ref_samples]) | |
batch["gen_samples"] = torch.stack([self.get_matrix(x) for x in gen_samples]) | |
return batch | |
# --------------------------------------------------------------------------------- # | |
def sample( | |
self, | |
net: torch.nn.Module, | |
traj_samples: RawTrajectory, | |
cond_samples: TensorType["num_samples", "num_feats"], | |
mask: TensorType["num_samples", "num_feats"], | |
external_seeds: List[int] = None, | |
) -> Tuple[RawTrajectory, RawTrajectory]: | |
# Pick latents | |
num_samples = traj_samples.shape[0] | |
seeds = self.gen_seeds if hasattr(self, "gen_seeds") else range(num_samples) | |
rnd = StackedRandomGenerator(self.device, seeds) | |
sz = [num_samples, self.net.num_feats, self.net.num_cams] | |
latents = rnd.randn_rn(sz, device=self.device) | |
# Generate trajectories. | |
generations = self.edm_sampler( | |
net, | |
latents, | |
class_labels=cond_samples, | |
mask=mask, | |
randn_like=rnd.randn_like, | |
guidance_weight=self.guidance_weight, | |
# ----------------------------------- # | |
num_steps=self.num_steps, | |
sigma_min=self.sigma_min, | |
sigma_max=self.sigma_max, | |
rho=self.rho, | |
S_churn=self.S_churn, | |
S_min=self.S_min, | |
S_max=self.S_max, | |
S_noise=self.S_noise, | |
) | |
return latents, generations | |
def edm_sampler( | |
net, | |
latents, | |
class_labels=None, | |
mask=None, | |
guidance_weight=2.0, | |
randn_like=torch.randn_like, | |
num_steps=18, | |
sigma_min=0.002, | |
sigma_max=80, | |
rho=7, | |
S_churn=0, | |
S_min=0, | |
S_max=float("inf"), | |
S_noise=1, | |
): | |
# Time step discretization. | |
step_indices = torch.arange(num_steps, device=latents.device) | |
t_steps = ( | |
sigma_max ** (1 / rho) | |
+ step_indices | |
/ (num_steps - 1) | |
* (sigma_min ** (1 / rho) - sigma_max ** (1 / rho)) | |
) ** rho | |
t_steps = torch.cat( | |
[torch.as_tensor(t_steps), torch.zeros_like(t_steps[:1])] | |
) # t_N = 0 | |
# Main sampling loop. | |
bool_mask = ~mask.to(bool) | |
x_next = latents * t_steps[0] | |
bs = latents.shape[0] | |
for i, (t_cur, t_next) in enumerate( | |
zip(t_steps[:-1], t_steps[1:]) | |
): # 0, ..., N-1 | |
x_cur = x_next | |
# Increase noise temporarily. | |
gamma = ( | |
min(S_churn / num_steps, np.sqrt(2) - 1) | |
if S_min <= t_cur <= S_max | |
else 0 | |
) | |
t_hat = torch.as_tensor(t_cur + gamma * t_cur) | |
x_hat = x_cur + (t_hat**2 - t_cur**2).sqrt() * S_noise * randn_like(x_cur) | |
# Euler step. | |
if class_labels is not None: | |
class_label_knot = [torch.zeros_like(label) for label in class_labels] | |
x_hat_both = torch.cat([x_hat, x_hat], dim=0) | |
y_label_both = [ | |
torch.cat([y, y_knot], dim=0) | |
for y, y_knot in zip(class_labels, class_label_knot) | |
] | |
bool_mask_both = torch.cat([bool_mask, bool_mask], dim=0) | |
t_hat_both = torch.cat([t_hat.expand(bs), t_hat.expand(bs)], dim=0) | |
cond_denoised, denoised = net( | |
x_hat_both, t_hat_both, y=y_label_both, mask=bool_mask_both | |
).chunk(2, dim=0) | |
denoised = denoised + (cond_denoised - denoised) * guidance_weight | |
else: | |
denoised = net(x_hat, t_hat.expand(bs), mask=bool_mask) | |
d_cur = (x_hat - denoised) / t_hat | |
x_next = x_hat + (t_next - t_hat) * d_cur | |
# Apply 2nd order correction. | |
if i < num_steps - 1: | |
if class_labels is not None: | |
class_label_knot = [ | |
torch.zeros_like(label) for label in class_labels | |
] | |
x_next_both = torch.cat([x_next, x_next], dim=0) | |
y_label_both = [ | |
torch.cat([y, y_knot], dim=0) | |
for y, y_knot in zip(class_labels, class_label_knot) | |
] | |
bool_mask_both = torch.cat([bool_mask, bool_mask], dim=0) | |
t_next_both = torch.cat( | |
[t_next.expand(bs), t_next.expand(bs)], dim=0 | |
) | |
cond_denoised, denoised = net( | |
x_next_both, t_next_both, y=y_label_both, mask=bool_mask_both | |
).chunk(2, dim=0) | |
denoised = denoised + (cond_denoised - denoised) * guidance_weight | |
else: | |
denoised = net(x_next, t_next.expand(bs), mask=bool_mask) | |
d_prime = (x_next - denoised) / t_next | |
x_next = x_hat + (t_next - t_hat) * (0.5 * d_cur + 0.5 * d_prime) | |
return x_next | |