abreza's picture
reconfigure files
427f665
# Copyright (c) 2023, Zexin He
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import torch
import torch.nn as nn
import mcubes
import nvdiffrast.torch as dr
from einops import rearrange, repeat
from .encoder.dino_wrapper import DinoWrapper
from .decoder.transformer import TriplaneTransformer
from .renderer.synthesizer import TriplaneSynthesizer
from ..utils.mesh_util import xatlas_uvmap
class InstantNeRF(nn.Module):
"""
Full model of the large reconstruction model.
"""
def __init__(
self,
encoder_freeze: bool = False,
encoder_model_name: str = 'facebook/dino-vitb16',
encoder_feat_dim: int = 768,
transformer_dim: int = 1024,
transformer_layers: int = 16,
transformer_heads: int = 16,
triplane_low_res: int = 32,
triplane_high_res: int = 64,
triplane_dim: int = 80,
rendering_samples_per_ray: int = 128,
):
super().__init__()
# modules
self.encoder = DinoWrapper(
model_name=encoder_model_name,
freeze=encoder_freeze,
)
self.transformer = TriplaneTransformer(
inner_dim=transformer_dim,
num_layers=transformer_layers,
num_heads=transformer_heads,
image_feat_dim=encoder_feat_dim,
triplane_low_res=triplane_low_res,
triplane_high_res=triplane_high_res,
triplane_dim=triplane_dim,
)
self.synthesizer = TriplaneSynthesizer(
triplane_dim=triplane_dim,
samples_per_ray=rendering_samples_per_ray,
)
def forward_planes(self, images, cameras):
# images: [B, V, C_img, H_img, W_img]
# cameras: [B, V, 16]
B = images.shape[0]
# encode images
image_feats = self.encoder(images, cameras)
image_feats = rearrange(image_feats, '(b v) l d -> b (v l) d', b=B)
# transformer generating planes
planes = self.transformer(image_feats)
return planes
def forward(self, images, cameras, render_cameras, render_size: int):
# images: [B, V, C_img, H_img, W_img]
# cameras: [B, V, 16]
# render_cameras: [B, M, D_cam_render]
# render_size: int
B, M = render_cameras.shape[:2]
planes = self.forward_planes(images, cameras)
# render target views
render_results = self.synthesizer(planes, render_cameras, render_size)
return {
'planes': planes,
**render_results,
}
def get_texture_prediction(self, planes, tex_pos, hard_mask=None):
'''
Predict Texture given triplanes
:param planes: the triplane feature map
:param tex_pos: Position we want to query the texture field
:param hard_mask: 2D silhoueete of the rendered image
'''
tex_pos = torch.cat(tex_pos, dim=0)
if not hard_mask is None:
tex_pos = tex_pos * hard_mask.float()
batch_size = tex_pos.shape[0]
tex_pos = tex_pos.reshape(batch_size, -1, 3)
###################
# We use mask to get the texture location (to save the memory)
if hard_mask is not None:
n_point_list = torch.sum(hard_mask.long().reshape(hard_mask.shape[0], -1), dim=-1)
sample_tex_pose_list = []
max_point = n_point_list.max()
expanded_hard_mask = hard_mask.reshape(batch_size, -1, 1).expand(-1, -1, 3) > 0.5
for i in range(tex_pos.shape[0]):
tex_pos_one_shape = tex_pos[i][expanded_hard_mask[i]].reshape(1, -1, 3)
if tex_pos_one_shape.shape[1] < max_point:
tex_pos_one_shape = torch.cat(
[tex_pos_one_shape, torch.zeros(
1, max_point - tex_pos_one_shape.shape[1], 3,
device=tex_pos_one_shape.device, dtype=torch.float32)], dim=1)
sample_tex_pose_list.append(tex_pos_one_shape)
tex_pos = torch.cat(sample_tex_pose_list, dim=0)
tex_feat = self.synthesizer.forward_points(planes, tex_pos)['rgb']
if hard_mask is not None:
final_tex_feat = torch.zeros(
planes.shape[0], hard_mask.shape[1] * hard_mask.shape[2], tex_feat.shape[-1], device=tex_feat.device)
expanded_hard_mask = hard_mask.reshape(hard_mask.shape[0], -1, 1).expand(-1, -1, final_tex_feat.shape[-1]) > 0.5
for i in range(planes.shape[0]):
final_tex_feat[i][expanded_hard_mask[i]] = tex_feat[i][:n_point_list[i]].reshape(-1)
tex_feat = final_tex_feat
return tex_feat.reshape(planes.shape[0], hard_mask.shape[1], hard_mask.shape[2], tex_feat.shape[-1])
def extract_mesh(
self,
planes: torch.Tensor,
mesh_resolution: int = 256,
mesh_threshold: int = 10.0,
use_texture_map: bool = False,
texture_resolution: int = 1024,
**kwargs,
):
'''
Extract a 3D mesh from triplane nerf. Only support batch_size 1.
:param planes: triplane features
:param mesh_resolution: marching cubes resolution
:param mesh_threshold: iso-surface threshold
:param use_texture_map: use texture map or vertex color
:param texture_resolution: the resolution of texture map
'''
assert planes.shape[0] == 1
device = planes.device
grid_out = self.synthesizer.forward_grid(
planes=planes,
grid_size=mesh_resolution,
)
vertices, faces = mcubes.marching_cubes(
grid_out['sigma'].squeeze(0).squeeze(-1).cpu().numpy(),
mesh_threshold,
)
vertices = vertices / (mesh_resolution - 1) * 2 - 1
if not use_texture_map:
# query vertex colors
vertices_tensor = torch.tensor(vertices, dtype=torch.float32, device=device).unsqueeze(0)
vertices_colors = self.synthesizer.forward_points(
planes, vertices_tensor)['rgb'].squeeze(0).cpu().numpy()
vertices_colors = (vertices_colors * 255).astype(np.uint8)
return vertices, faces, vertices_colors
# use x-atlas to get uv mapping for the mesh
vertices = torch.tensor(vertices, dtype=torch.float32, device=device)
faces = torch.tensor(faces.astype(int), dtype=torch.long, device=device)
ctx = dr.RasterizeCudaContext(device=device)
uvs, mesh_tex_idx, gb_pos, tex_hard_mask = xatlas_uvmap(
ctx, vertices, faces, resolution=texture_resolution)
tex_hard_mask = tex_hard_mask.float()
# query the texture field to get the RGB color for texture map
tex_feat = self.get_texture_prediction(
planes, [gb_pos], tex_hard_mask)
background_feature = torch.zeros_like(tex_feat)
img_feat = torch.lerp(background_feature, tex_feat, tex_hard_mask)
texture_map = img_feat.permute(0, 3, 1, 2).squeeze(0)
return vertices, faces, uvs, mesh_tex_idx, texture_map