abrar-adnan commited on
Commit
f8f9105
Β·
1 Parent(s): 03af31e

initial commit

Browse files
Files changed (10) hide show
  1. README.md +10 -6
  2. app.ipynb +1 -0
  3. app.py +33 -33
  4. image1.jpg +0 -0
  5. image2.jpg +0 -0
  6. image3.jpg +0 -0
  7. image4.jpg +0 -0
  8. requirements.txt +2 -0
  9. vehicle-recognizer-v1.pkl +3 -0
  10. vehicle-recognizer-v2.pkl +3 -0
README.md CHANGED
@@ -1,13 +1,17 @@
1
  ---
2
  title: Vehicle Recognizer
3
- emoji: πŸ¦€
4
- colorFrom: green
5
- colorTo: pink
6
  sdk: gradio
7
- sdk_version: 3.16.2
8
  app_file: app.py
9
  pinned: false
10
- license: mit
11
  ---
12
 
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
1
  ---
2
  title: Vehicle Recognizer
3
+ emoji: 🌍
4
+ colorFrom: blue
5
+ colorTo: gray
6
  sdk: gradio
7
+ sdk_version: 3.16.0
8
  app_file: app.py
9
  pinned: false
10
+ license: apache-2.0
11
  ---
12
 
13
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference <br/>
14
+
15
+ HuggingFace Spaces App URL: https://huggingface.co/spaces/abrar-adnan/vehicle-recognizer
16
+
17
+ Gradio App URL: https://05490966-9671-4392.gradio.live
app.ipynb ADDED
@@ -0,0 +1 @@
 
 
1
+ {"cells":[{"cell_type":"code","execution_count":1,"metadata":{"id":"51neqepjqu_z"},"outputs":[],"source":["#|default_exp app"]},{"cell_type":"markdown","metadata":{"id":"Hm8cO7PDvYZe"},"source":["# Cap Recognizer"]},{"cell_type":"code","execution_count":3,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":6053,"status":"ok","timestamp":1672935911256,"user":{"displayName":"MSI","userId":"13207606968035913219"},"user_tz":-360},"id":"cUZU1ZIavbMD","outputId":"9cf3e92a-a041-49fc-c118-3f32f98d646b"},"outputs":[],"source":["!pip install -Uqq fastai gradio nbdev"]},{"cell_type":"code","execution_count":null,"metadata":{"executionInfo":{"elapsed":442,"status":"ok","timestamp":1672936376469,"user":{"displayName":"MSI","userId":"13207606968035913219"},"user_tz":-360},"id":"FsrcDOg2xzCf"},"outputs":[],"source":["from fastai.vision.all import *"]},{"cell_type":"code","execution_count":null,"metadata":{"executionInfo":{"elapsed":6902,"status":"ok","timestamp":1672936199012,"user":{"displayName":"MSI","userId":"13207606968035913219"},"user_tz":-360},"id":"7WvIfcjDvgx9"},"outputs":[],"source":["#!export\n","from fastai.vision.all import load_learner\n","import gradio as gr"]},{"cell_type":"code","execution_count":null,"metadata":{"executionInfo":{"elapsed":1169,"status":"ok","timestamp":1672936782524,"user":{"displayName":"MSI","userId":"13207606968035913219"},"user_tz":-360},"id":"euLWl9eAvk-T"},"outputs":[],"source":["#!export\n","model = load_learner('models/cap-recognizer-v2.pkl')"]},{"cell_type":"code","execution_count":null,"metadata":{"executionInfo":{"elapsed":446,"status":"ok","timestamp":1672937948774,"user":{"displayName":"MSI","userId":"13207606968035913219"},"user_tz":-360},"id":"tzouWGYqwDvF"},"outputs":[],"source":["#!export\n","cap_labels = (\n"," 'balaclava cap', \n"," 'baseball cap', \n"," 'beanie cap', \n"," 'boater hat', \n"," 'bowler hat', \n"," 'bucket hat', \n"," 'cowboy hat', \n"," 'fedora cap', \n"," 'flat cap', \n"," 'ivy cap', \n"," 'kepi cap', \n"," 'newsboy cap', \n"," 'pork pie hat', \n"," 'rasta cap', \n"," 'sun hat', \n"," 'taqiyah cap', \n"," 'top hat', \n"," 'trucker cap', \n"," 'turban cap', \n"," 'visor cap'\n",")\n","\n","def recognize_image(image):\n"," pred, idx, probs = model.predict(image)\n"," return dict(zip(cap_labels, map(float, probs)))"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":145},"executionInfo":{"elapsed":9,"status":"ok","timestamp":1672937951093,"user":{"displayName":"MSI","userId":"13207606968035913219"},"user_tz":-360},"id":"MdysqYkLw5PH","outputId":"108f7c2e-58c6-4cc0-9a7d-08c875ff8650"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAMAAAACACAIAAADS5vE8AAABHGlDQ1BJQ0MgUHJvZmlsZQAAeJxjYGDiyUnOLWYSYGDIzSspCnJ3UoiIjFJgv8PAyCDJwMygyWCZmFxc4BgQ4MOAE3y7BlQNBJd1QWbhVocVcKWkFicD6T9AHJdcUFTCwMAYA2Rzl5cUgNgZQLZIUjaYXQNiFwEdCGRPALHTIewlYDUQ9g6wmpAgZyD7DJDtkI7ETkJiQ+0FAeZkIxJdTQQoSa0oAdGeEQwMoDCFiCLCCiHGLAbExgwMTEsQYvmLGBgsvgLFJyDEkmYyMGxvZWCQuIUQU1nAwMDfwsCw7XxyaVEZ1GopID7NeJI5mXUSRzb3NwF70UBpE8WPmhOMJKwnubEGlse+zS6oYu3cOKtmTeb+2suHXxr8/w8A7pNTlvGwJJAAAI73SURBVHic3P1ZrG1Zlh2GjdmstfdpbvO6ePGij+yzmszqskrFIilCpEjBkixBsCyAbgQDAmjBgH/sH/8a/jRs//vDgD9MyDAhim5k2CQlSsXqWKXqsq3IyMhoX7z2dqfZe6815/TH2ue+l5lRxSySwSprx8uX95172n3mXmvOMcYck/D/nwcRBYECKUJBhigAA70IhQkoiNvd3N0jCADgEVm1hps7M8GDAgUgECMYUGYVmawWlrFaFiiiGAGUVSSiE3WvFiEcFLFaLJ3j/YvdQvlzt47W/WI/jtW8mBtiLKW6qWhOCRG1VPcQloXKIvN2u5e8eLrZrpe9WzzY7jpKI7lbzSQdiSA0UU7SMa2y7Eq5HAqclVmzfjxOu1I+f+u4A0bzYrUadlNsaykRjFipKNNYvZNkjJ785Zs3itfHlzsiEiJhEua+74ujll0v/R8+froSeeO4I5ZpqszMzO5eShngu+r7yUWECEIIj1KN/2zj4NM5CEREP3wrMwszEzFx+zURMTMAR4CQkqq0uxBFAKD56doR138zkQinpEQws8Mt4mZmJiqH9wFlEWZmRoAABMwcALOwsLsDQEStFgDT/M6ovTciJnI3AoloSomIPOL6E5ljt9tXs3Eq1T0I1S0imEiImZlFRARAuM+fi9BelJlVNSJKmWop4XF9yiKiPbTdwsw5ZyENBxGNZttar0qtgLTT99+yg1r80A8EERG1sxkRHh4REdFuU2EClFmYQYgwigCIAIpn0UMRjGgBJExJeP5GD98HgTyi/dDuRkTSDhZVVZGkoqrMHAgR7vsugAgoC7XABxFIVVMS1TlGk8ocpszXnykCwlRKNQ8QF4vJfHLzAAUoAhER4R4tktw9ItpHb1eOirj7OI4gLBYLM/PDo9qpc3cziwgRFpZwsGoFSmAiGEDAn+sA+tE4uD7i8FEDaF/R4SHztQvA3D0CREzU7v/c04JA7o4IBhEgzERBYXAnIkIAoSJd7oRImeaVhEgIIhwRZta+HgJFRCnluTdMcyQFGEQRFIBHe2MeToCbgwgBFU0iDBAhwhGAu8zrJQhwq0RgEWJSEdUEIrOqwv2iG8aJOJGkoZoTiMCgJEItgMLDvX1qVfXwnLO0DyNibjnl9itmAhCEtnPF4XS1VbudazkkBm05fnbe/1t00A/94/kobKcSQAR8Pr9BBAaYIMQEhDsFsmYCERN8Po/hHm6EYKa2XLRTTNTWm3mxIaI5tPFsEwxzRLT1r0Vve1ImUhVhSpqY5mhrqYkKy7zTughr21AicPgsBIRZTskcl9vtZjdO7sHEzEqcWFS1bZoRQYS+7wlUa3V3dxcRVe27PuV0uEWJiIlB1JYrAPMnigCCEEJIwFK4I5AH/pyvQH/ag+iQwDy7hQjPLil/tgihZQTclhaCMEW4CHddEiFzIwQB5hYBAs3LD7PwYXU5vEgcrm9hafHBzx3t3RDg7sysKkSIeUcBEyFCVeNwN2EBIsIJ0dKgnJSIzGqtFs/lQExwt/XRCsSjmQVqeEQQSFmSJmJu11B7kLuZGRAiMo1jrTWlRCARcTe/jpj25MyqmlJqebS7JUGUslQ97fpTzRIRfz4DiEHtz7NA+JGjXVvtEmViYQ4gEBKU2hVOEIIAAnCEAgokJiJXikRMADMFccfcMTJDKCyoQkFUogKgCCMHoQNlEM/rDTginJyM0xgcAUSwV5B7QoITMyl3iBQWiLafWvWKsOzGQcqsCGEYcQ3qNYAo4STOYkLGHNWrEDKLiDiiVncHc0RMQsEsYAmEctw6PTrpewmEIyJYEIRqUWswUGtJqDkmpghJWeSoT8vMiTyrgMCs6qrJCaThzBIkzKyMRC5kDGcgAE46uW+nUXPquhSA/ksKij/NMS/7P/6dI+K5iqltWxFgYuWWgUQ8t/a0UGNCtGxDFcLM5BZmVosrz69OEa3iZSZhcrAImzkRJZIAFF7CCQBVViPmoAAZUSUSpkoRwmCiCFEiClQzUTKHMCkR1UCmrJKEag0JCItEiAjMwk2YmAlgD2fmnHJiiCbeF7eqKpvt1rlnEfNISRKYAKs2hQdBRCSQkyz7jpncnQnKpIs+Iiy8lGmsOFqtQ9pppJbsiXIS6rJWC0JRixQYPSazMBCQRBH1z2MA/amOlgs7/LmbqO1QaHXn87VYewDaogALeAQRaVJmtqnOOQpdxy8JQUWVqO1FImpWiShJCoDDBQRMpNC+c5NaJwuYQSgQRCLEDKJqY+77119/pVstLi4vN+fnZRq4FLdSTYgXTMzBiTSLKqrVIkyqmhiIMDdlSQJECAsTI8LMa3VmOdtsK1pdEICDxd2D4G593/tUazVibiVYEgl3MEUEg1SkoWJBRAiiECbAGa4swhLhBDKPcSxjAyyYx1JbrvfnMYCuv3I/JC0/WohRIA5fckS09Bet+D4cEdHSjkPRTkyMMAhHBAFMsIbcyPwA95AkzPBpIqKsWr3Cg4UjcL2FubtLNVQidVJiJUrVkJT69dJRaW/ENIwYnMTq0cnRX/trv/KLv/gzuU/3H53//te/s9/uY7+7Or+4Iir7ncOjbdsgBlSk61UQWZjbYgnqcrcvw1zHRzCYgWEYl13X9QSnOo1hTiICApMkGSc/rNHezoaqZFWEW3ViIpKctNRCEarCTMosQghIUmbq+34zTI6qOdM4ccx4x+QeLXv7FAPhn/Vo282PuYW1g5hg82MDHvOlGJDn7nNdYBMHhbvjUFSzU3A0mE6IQPCAEgszkcLQCjYgGh7j7pUt2EFO4ez1C6+/9q//ha/euH16/6OHl5dPah3c/L0PnmxG/spXfvK/82/+tdu3T66uzh48evDxx+8/vXhMkk9uHp3evXHr9Zd255fTk8fxMKobqoVJWmqXE6wSooHjBIyThzuJMrGK8IyC0m6YWLtxNwbQsSxzZ6U6wB7ETMSqqlka+OQeBNLE7DOwQS1hZxCBIkQoq4JFmUVEu4UYjzGKZpW0G8fR66LrRKTVmn8eA6gFz48TQIcymvAcssxotQGF/QCQ+FwAESMcczF9XbsRUbtgbUZOwMxK4uYefl11MTM8EETBbCbmf+s//Pf+h/+9v2L7y3/029/8zlvfWCxSUu/7xb/9b/+Vn//Frx0fnTx8+PjiyaMISOUlRc90Ney2UWS9yH1a3LvZ31rb6Y13/uj+xdlTK8YkdZpUKKfEEaVMwnONnVNKTIetlter9cXF5a4MxT2J3FgdDcPQkHSfa35wy4NaYjRN6y7llGFmbkEIb9sik9eIEOacUkgW5q7vQDLasJ/MfCLhlHOZigdkRo3+HATQ8wj6/MNz0fM8jTCnyc+y4Rn1b+lwwwNVhBxEQUZxSJ/nJS0CzAA5QrKyezWHhbsHUwQbOGAMN1ADzRgRUcCkTCCYuQo5Gijogt4w/fv/wV/4n/7H/w7KsBtu/Pwv/MKjBx9//PFHP/3Vn/v5r/3S7ZunPp59/P5bF5c74mSO7fZiuepvnyztyXnZD3tKuVNKXkXeePXeG/defvzo0R99+y3b7so05uUymM0jUcoiu3EfbsQczMNoHkIofU5lma8uhhWnjpMKhxmIJ0RUS8KlTAjtJYh5hEt4TkLhoAh3YmqFmyo5NQTEicijBHLW9bbgYtydOdtUBQ2yr6hlqZJzt52mP/sA+tHjT1h76DmgsIF5TMwgP5AOcxUWDfogPyxShzQIHgEHkTNREta+I8BsZE4eICCphAMAE4V79SokMzsiLExhaJdfrfbVn/nC3/qP/2aX3aK/cWt568X1CzdWTx4/vv3CXSf1WnbboRQjpmJlqtWoBsfJybLUcn65H4Y9iJl4YpEoInzv5dsv3L1x8fjirW98u1QjV5vKerFOSu5bVUlJyzSxpBr7ahal3Fmuy4ARUqzux0FVnckn84gMuAcTehVmDsaqXxBimsasykRE7FbDA+HMhAgCIqKa5bzcW7z78ZNHm81gjmB3pwi4Z6VlUhGehP88BtCPf8x0FeM5WO8ZFYlwOqxw16ixciMXw8PdPaVUapkLChERFxHylk/NUJOwCs+7Qlv/mJmYiP1/8Df/3aP1UZmm1C9zvwbp7Vt3OMLKGFymqVJaLI8Fu33dbsswhjui5Mw3bx55+DDWcdoO3qWsKWmFOXnX5xdee+n45OTdd975+KP7UUrNPZg1d8vEyuwACyLMIi73+355dNIv7w+7IapUdJqcEBRBcAI7hLHosgrcTDWZuTJHg55ZzEciqrWOw+iBBhvC2Em//+DBh+eX1UGBcBfhPmcPsTqaGzsr7M8+gK6pu+vjB6Kh3edHVqUGqxOBKYRZlMkMz1DauAZ2cV06RRAxI8xdRNzcwgAys1WfAXIWKqXWOhdcIKZGckBZPIwIZrVx3SXitTde/vlf+DIcXbcu3u0tkSh36/WN2Fydj7VAGEjkTqLuXkuZhjFsUgohX/YSUREeCLNKFBAKMhiKU151X/ypL/fr5TvffmvwyYcYqrkhk+fEu1IYJkJ7xvfOzggy1JqTRLiZTWat7GJSEJiwyJqVa9kZSEVSymHW0qOIEBFNychaXlPNzHSznx6cX2yraTstYV3q14ul6GJzdaYEVVlo92cfQP/MR8t+KJBSoiQ0TmhLD9gRQMw5c9vaG94jEtUpIMQe1vY9EdGk7lGG2kii6geFBhOC0Ihb90OSTgTUav/KX/jKjRs5igGieR20cnJEhAxOTMJMYR5lqmUcYJW8MioFEOa1MEeXOefeq47TVEql0KCEyVWqMIL41c++ceP2zXe+9Z392eV+HLJ0i5xBsSs7kAvRcrF8//JsCjtVOdbkBCEpZjHzqnCQCi8yq7bEmkVm4L6tQDlnDlHVqb21CDcbphjq1swBdw+O2hgcAXXMk6gc0ss/j1TGn+6gaMkQGqVJTWlz4KF+8ABARE2Gcf0EPh9mBz6opQJNhiFEjeFq6GMjp4RZU/6pr3xRpDA4Qkh7TUsBh5kglFxRBIZZBOLwAptQy7gb2s7IgDAJI6sfLbuj5YLBdXQrHBZm1bwW2PLW8U9+7Wdv37sboC51XUqqzNJUc7iD/oXFKgBl6ZmzpF41KyeiXlUaMCHcJ1UhVe0WC2Zp6DyzNBFShAPwQ6kRQIHvhl0SloioNWVdrpZ9v4DHerm6e/duAA6a6p8LJJoaH24H/rplu43tmpWE7X7P7UrcmKkAE4d7rd6eRzg0KAKBCDgTGsSqM3gYxE2tM6M+IFLmJJ1xZBlLqVa97YULhgiKiRBYBK5BsOqsGsKr5eLzn/tsKU5kYAqEx4SY3GqEq6gVQjWUCV7Ia60T4MRInY7TJBJZObxGgIRSSgvWPPl2N4zjplrPXecAG8CQlL70c1/pT4/vv/Ouk0UJoU5iX6142CvHC/ZBcxqrw01T8rmwhHkIPItR0mLWJ80pMVUHe5C5FYviqOZhoRRMXA1m1YPD7Th3CdiPw3rRc7cgtxsna6a4vLqyOi1Xq81u+PMQQKCAcAMCn7vxB/++Zrswb16N2gTPqjnBdV0WoGirTfDMXgQhmKHKUT0Q1BRXAEDzFe3BAQUB1AIoU6TE+5GZGcwOast1RBS3V26f3L19l2h0VGEFMVBAQcIgCQigXeIyjQQH3Nw83BFgM58AMEzgYCZhFiLG0SrnRJvNdjdO210RVa0pxyJYguOlz7x6cmN1/5tv+xgK7Un3KE+G7Yvr/NLxcuPpybTPHB7mEQ4KB5Mvk3YaBhorJRbxWryw5rFYuDtxwxDJg92ZqDpVqxEapZD7naMTvXkK0H6aTo6WpystxRZJ17dvTMWT6J/9FkY/GCuffJ8At/KnCR6Iua0lNJfo+aCHwowCRNvG6LCLicwKrUYUskjOiYjGaRTmWmspJSKaump+CiA8RBgEM6OD/lVE3OP1119dr1csHcuSpSfS9gAmUhEWAnwchnC4uVejgDBnVQ4IUR1Hd0M4UxBcGYlBYatFd/P05PSkX/RAjHUadldX+81uGuowlONbd1787Jsj1cw1CYNoPwwXQymy2Ew1EDnnJo5LjZgg6nInxFar19pSn1qqm7lbKzwj3N2Zdbk+atcdmIX8eNUlit3lmU/7TvnFG8d3T9Yp3Gpxj2q4utoI/Tlg46+jpwkG4ofrrcPyc1BhNZlH2+NmOQfQzpYdUJ8mCboWEF9X8hFoQRBENYwIjZicpqlUAyh32W3W3KhIAI0aKlYaz+bujeq/d++OCLknYiXuPchqhdVwq7VQIKsOu7q5urq6uqqlNO1eRDDHNOyuLq9SSkkzwimqkCVVTR1AQhHEfdfXinHwYbJp2JZx1L679N3xiy/c2+7vf+cthImIJj6/2ksvV7t9n5Myu3lj1SwMTsosPMsKGq+fUyKgS7kTNsCKFQtzr1Nxh0UQcyaEh3Rpux/glaMOeztZ9ixqXs4u9+6ljMPRev1nH0AMQnj7bPaj4XOILZpp9CBEiwhCEIgpmqhvjjMmDhbiCPtRItbdhekATM83ispuvzcPgOSg/mTmruvcp2kslDTCwRJASqnF0BuvvSTiY3GWRBBzCy+EiDCEE6LWarVOwxhuqtJTV6aRcrY6dDmtl4tajQmqAoSSZQlCDXCfOKDVPQn6nNdG41Q3+2m/3/pAZn7j5Xubs6e4uk/wLuWn2zKWLVGsENM49VlzSoVJjIVcRFbLnoi6pHXyPqeU2cAONGlKRJRaq4fDQFTNonFmESqaVPe7XbjvKzSlXtkCOafdflx03arLf/YB1A66XmPouqL6hPs0Joua8OAaieaZbUZrvQg2byvUXHbRLMoEgIgwN/e5zq+1BjpmlqRuHgCL8KFgr9Xb/gWZOXBRFaas3SuvvmQ+sCpLdjCiZKUyRa3GRCoMOAGq2nnnYUAs+sU0jdT3w3brWU3EfUazhEHw8EIkxLLs+uoxlSnAJp6z5OVy2NrV5XBxuRmXixuvvhrvPmT39SJfbEuZsM4pCSnaVg02JxFlaRUfPJqcKGmCBYJB3gAtIY4gM5csJBLhIGaVMAe47xcXF5fuYe673SYt+yjjKseN1YpB1ejPOAeiww6FBthd3/qj96T572gYz0yENep8VoiibWqMgxiUD0gQz9xZK8KcwueODCBqLX3fLbrcdykxKTUWP8zcvYnticFw55BwV03KcXLSNb1PgLixtw0xslrHfZ2GOo1AdH3PqiCq1VJKKaWmRyNCSpwzRxhxTUrKrCxCUHaGC8UipyzoEmdBJ7Lo9ObpyfFqvdsN++Bbd1/wQNflW+ucEUk4IrSTyeowDXALt3AvZTSrBJSpEMPhVgsjhMncq3sEAuQIlawMcxPCskvKVOuUs+Yu567TJMWmYdwAUxk2fVKKqNP+z2wFomfUVVNnEwH+PKgTz3XH4DrQotVjTEyAkDDRzDDEs4Bi5nAK4lKrCMMBB4HI0bQsDhIRtto4s9xlRFC4hzOTgzIAMCAEU04eYDchBSZD3Lh5cvv2kZuAlANEDkdYCFEilHEYx00SGhERnpISea0ylTF3nVDqu14Ew7APj+ViYWGtD8stqk1JJcCgJseQcAqijmGoxn6yTMLr/Vhfef21d9553wyvnnZhFXmJOgmHC4uQ1RoWFgL1Pufcdbtxa1bdiMkFTkClqAhzIKiSM7LAgWC3BDMKgbsVYtpPe2It5hf76WjZb/eTnw3K5NX/ZQcQ/+Dq8idUXj90XOfah7YvAETcIieISZiafgGHzgUiRlNfxBxwzK3Pj2CG4Jk6BZfWqmDuFuzeVEFxoNJEhTyCGBTEbNXu3L5zfHzqs7RIiJjYYfAmwREhot1uKNPYq5YWYMpRicLXq0Wt+2GoXmvXLxZ9V+sA1KyFUh6G5JaSRLFSa5DkqdSWWCtHqZWD131Kgr7vjo7W+/3wwq2j0yOp3nV9t9tdMit1XG0MMknKFCLPvmVm9pAGHypTRuTsOZCEmMBMxByAu+ecHGygnNJUTYkBlGmqRjl1++0WxCl9ymU8/fF/fvwjrknTeYmBzE2bdN0j18DiuNb9tB9ATf/LFKqckiRlUWlQtVsVxHqxDPDF5Xa7HSIkSIgTgfBcn9dBbNRIeI/wl166k7oFkMApiC1ggLcEywxArVWEV8vlqu+WXc5MFMZh425LYV6nab9jijoO07DPnleayQaVXd+NSfeLTleLRRIR5i5nIp5qGCfnVBu4qKnru5Pjo6vNbjdMIHn69GmixqdREs0p5ZT7vhORQJSpuEfXdaoJaAoGEKPLab3ol11edLnPKYm6B7EIc9LUd5lbNwoAM7hPU93tp/V63aVEboucPsUViD6JFqVrcfv8N9GhfJ+rpYgfelCrmWhWjgFBTc0UHuEBjob3XN+VmcmBoIDP3bwRwqyqRHC4R2VhDibI8XLp+2ljW9YmrEdSfQYGMFOEm0e0iklBpbi//sbrojmMQOrgmbkUltBdKa2bMyK6nOs41VKmUtwsZR1HUESXlMLhocrjsA8pnJb9em0RzFqKn9Xlo6eX293kXhzsoAhj5mqeUk/gADPxyy/f26ZkdX+x211Nu6uxL+FZOCyYKLFIU9bNWUCoCotAlFiZIIogVvZOSShU5nPYeggateNmDHbznBkIYgrQYrnsmEsZF8vFp7uF/TgrDRGD3CO4ZfTPK9oJmCGfFj2tkQLPUJ2Ge123lF/f77B0SFMOMwnDrUByo4HcrTUa95qyelZREa9VmcOsdZLHcy3lYWBhVQmwRbz5+usBBAQkxMIi4SCLMlrjw3POpWA/DNMwllolpePu9GpztVqvx+3V7ds3U8Jmc0VETIK1OPrHu/Tg0fTg0W4YvaadqHSamCir5JxTYnfvidxbqy2D4s03X+8/8xny4cHl9mqzKxdnjx882mz3ZkBQ5kQWxDPthUO7M4hbAKUU7iQUWaVPCvfGIvlBdh3m4R5BTKTkENasFlbKeLLqtjsby78UOQd90s/PNIfzu8Wh8ib8YA1P19fQnOIcNGIIBNyjXSqtT2/u8DkkSUzCaCwyuVWEs87JErz1uxPC14uema3WPieP8KYVQRALoa12wCzfk8XR4tU3XiESkkTSOs8ConUa9/udhxOzape73NuiLgtYxqlM00iah91m3F5SeJ+E10chi8r9O4/s3fc/Pj/fBymppj4tBVmkz9InSSLa+rJSAlhEI2DuxPBevJhVfeGluy+nLLVYsYcfP/ruW987e/TUq1erfZ+JhMAMuNexmDsZV4ZHkAh3KYEt4MyJmYJAYBy6ZjNa4cFMVr0yUTHf7q5OlzeKx/lmp9c4W3wSiPfPcwTg9EyKys9RoXi2hQVQG7XLDg4EzZ141HBbADOI09pk5lWqseOt9rLw1jpDjfwyQusYCISTRJDI5AjmCEcwhYpDkw5lty1Ddcskqet22Hcp72wqiEzIMNbeRhOGQSkibKokN06OTm8f1eDgRHOXCzsw+s7CIUpdV60wIF3PvY81xrofo1pwDVDXI6xf3Hy62/3BW0/eebAZR3RKy8yJakrokqx77ZKkJF1OXc4pSTF2cEoZxO7hEUzkVmPZ1ZKDyM0j5x3Ve6+/cuele/vt7t133/2DP/g6DT5Nx32IW6hSIJLDbeyWvYhEDQnPiZ1JUiZmIzBE2x7vJkrgNAxWqrBV9jAHEJPFdrRhLJ/6CvTH8VzXtTkTg7z1s5G1PuJryr2FynORPfenREukmxqhWbbQ4fU83B3BLfIqEbE6mwDMSOKZMRrViBJm26ttMaw0a1IprKqoE7yRYmxmIIiqhBHgTk72ymuv3rx547AOUnsZJuq6RSyPS9nRRFYZHtWjGlkZ1CbDWFDSarXSo7ff/fjXfucbHz14wuA+yY2cstKq41W/yDmBCKQIslJLIwFNSRO8OkUtBmYWbW4PxJzS4vz8YrFcpq7nqZRSFl2XVb/yla/cu/fSR++9f3H/gaHuva45acA5IHS0WO12OyKWLqlqyoB5rZWCWimQUmYVEJNk99FjyKtU9rTZFpH+/Hy3349Mn2YZ/4wlfS4mfvRo+iwKmr0EImim0BsC2Fq+4iDUab0oMesy5ihsvOp1jLXNjACauysaXW/CJMJ7lr3Bg9Px0XE4jWVj5qWUaBFnFRFJlQlTrXDKOUkicWJWiunll++ISjVvehJQuIcFiCV1S0e4N4bALapFDS8UVSUt18tvffe9f/gPf+vdjx5pf6R53VOsEhZ9WvapE6hwmSYAhsosSTnM3cxUWSYiruMYIBIRgruRCALMkpIsl71qyjm5R6mmSctY7t27e+fWrfqT44cfvv/2H317N06nqZ/KIJBhsyWGpjyU3arLKaNcjeHerCOYKCUFUzEfxhGASmQlrW2l18dPz0A4WvefVgDNSQhijp4DFfp8u0WrXOacJ5xZ5WADwC0bnk0hQMJu3kj1RkXh0NeCcHiEe6vhmRhwYS5uIg1xzQgiJOYgAvvSawV5rfVkpatFt3swTONkFKwSzRAGoBbHBGI2imqFoQ13/vzn3ySAiMM94MTOs8iIiFVUrSZgMjdHWAwk0G51/4Mn//nf/4d/8K23OeWT9aKXmjVy17FmVC/F3MDk5ggWhIlE67uQwjW1ErHlYwQRNydhVWUR87ros9UJ4SyaVXOXPDB1dSp14iJJ3vjSF+++8tKT9z64uP+gCIhQa10fHU3uzJxEFr3Wzdh664mxWC5EtDEwVi2ChUmZhDnCc9dLThRYfNpc2HXec70I+Q/dI8Ax/5Zn/O9Qgh28E+ZtjsGHrq+YQ5NaeS9NhEhEAVVFkDkhLMJJglmJ1dwn22YVq3Uca2gmUIQnNRHOy+VgxcwXJ4vzYTe/dItspmEcI8asiqCU5JVXX/JwN5r9H66ZWY9wo4Aym0hUIxClxcPHF//gH/76f/Wr/6QaRNOqX9xc5yWbCAow1qqkHubFWJqQSFo7SXOTMYSVUCImgDiIiayIq7IlIZCDJCVRRXBKWVQl5SBozqnv+i6mYSjhnKTvF7dffPHRxx9cPnxcpzIMQ5O5mFWVfHpynHOa6iBEZgY4CYcHC1NImHS552Hn7pq1X3ZRTYT+5SHR83b2I03K7WgZRUt64lCrz3jgwTPq0MsW0vRjDSY+kOfcWEkRCkQBAGKounkxC+3pb/xrX/vim3ckrt565/y3fvf7H390Oex16hMxVoslDYOFI2KqkzAlFhGwQSXth6oqKeVabXGUXnzxRlv/ZnotgpjCw71GncJKa5HJOV1djr/267/9n/2//v7ji32/WDEqvGAcrNO9ICYjDocVLwQnBLsGOYMgEQGzIAQZiEJnElmifTCqTJ4SiygRxziqikoq4wiWYAKzE+V+wch9SkICoyrijHurzyz6xePvvxfmIGaiUifEInc5pYTYCzGB3JyJrJHz4XASzmbbCDebShkE3OdPQVR/XXM9HylM9ENlHjPXptIiEGJCePiCpVphUGND24bFEPbWCs5EhLDWNC9EKqBAcLT1PbxSIDHV1pbCGe6R6naPf+9v/MW/+ks3F8M+cfqJl2/+lZ9d/+G3z/+LX33/4sotKrOv+xR1hI2jQ5m6zEQgqx0kSFUzKBvV1cl6vcrN4cAxETWyVZjcfKjjdre5KmXqF4uvf+uP/m9/9//+R299qJrWi5VX227247DbdbTZb0RFReU5czUiAkoAKtI8hOjQMwtAGCLM7DFv1OIRMVbCqCIpqQoTjdcAfXvCDVENaiQuMZmZpjQEju7c7aR7/MGHqhwMAh+pDnBikEMjmCCShNPOyzCNmRVNThmkHkvGMvVjjaSfKhJ9iCCKa0h61pi2G/mwx10fIozyT31amukLOkBHTZURzo23MjCHqACmgpxz9vwTX/7yuH27s13l4jauGb/4peOffuPnf/t33/1//ObZWPa5z2C2ymSpF1vkhXvZWiGhJKoBMfeIZbdYL0+YEms3lun87HI/jA/uPzg/Pz+/3OyG8c6NEwr/tV//jV/7x7+FphIJu7zcjsNk5kS8GWI7bmM2slTVWbffOmyaSjCloMPReFZlbt5hFmCRlLKHNS4iKY1lojnzbVZa7WQKi4C5lLGWSZOKyLjb97ooQtM6H7/58u7B49jsQdRLKlY4AEYIAWgOilZtGIb+6BgRCF8sOlWmQE55rCPwKbc2X9fqh5T6j93C2iF8EIb9056TmYUJ7o0Bq7UCaEYC5M7MIoBXTSAoIdbLtW8BGHGXNcOmyccsu1/+xRuvfuH2b/7Ge1//7gXxkhCBfWKJ2rahnJNaVA9LCeNuv1gvP3508e23fns7OjRfXFws++WiXx4dHX/2S292vf7+b//O3/s7f+fh/Y+7bikUPl64+yKw6CnA7uHUuc/67wgPM7gbYEAjZEy4FI4D/t6oQJEE4ohwQFiJJShUpOuSijBTmq3yYnaqY9aUVEIORnkRgYRmJTv4NJA7+e1XXnn8/fdtN3BgobltlMEkwk0dlZLmlLS1j7GoKEBmhQnhRp+apJUOZVbLZub/iEgOvrBmpgeeDg0PdO9y9udcVOZENsLDZ4oKuPZ/dHe4MTcNFCHQLCWTqkZMdWppZ6YkMX3zm2//wk++ePbw4tYiRIgoMRuoDMPFi2r/7r/6+uuvbH/32/c/vL8pYcvUS9KpDAafqLqiXyxu3Ln92Ttf+KW/+EvvfHg/rY9fe6G7ebzK6TNJUtaMwLe+9c3/y3/6d7777W/1Qi+tBLGvQUPKzbzIPCxClACeS4mYPxpCGqpu4c0HmJyvqT8QhKWiBJFHa74phyUmTdWamDOpiJLwLHTKOafkqlWZA5FSEvFqQUwQcYCKcfDHFxdH9168fP/9iogIZSJAU1IV8iCSnFJOGmaEUCGGdyqLrrvabtw8qX6qK9BhufmkFaXVU0QsQkR2nZbS9f8dEB3iJs3g5/XSDeppFieHFrCZdsWcV1EQqhMZVoz/4v/7X/3cz/9H53hQzx8fLZNSIRQGd9xbHev04HNv0Euv3/ud3z967x8NxvDEt+++8PmXXvmJL37xjc++fufundOT48WyB8GspU0Q4kW38GLf+c7bf+/v/r1//Gu/6RF9kg2iTMNuPw7FK8gRDvJobndNpx2zkXBEHBqy8BxUlilySimnLndd35kTRWWZyZwG9EXAjZvsn4m8OvHMORNVkZpzTklEqZSyWCxUtVmxpk65sQQWxePB1cXNOzd4kZtTIB9ExgQSppx00eUuZWkLoepy0b344t2HT68IUT5Nc4U4CCs+GUL0a+9Z0QZB0zNOdH7kvBSrxrxDHZbitvgDxHRosziE3PxVEDMMDEoKJSqby6v/0//57/7P/xf/k2/8xv/n/tMnpwtbUk0Rbj5GlGm/HwdK9Rd/4Us/9Rf/jXz00k+9+fr6uMsnR0JqVN3M6iTsFLJICyuD1enJo4e//off/O3f/O3vfPNbZRhXwcPkYiHMMNLghIgIK7W4FYe13ejQtkY0//BMtXB4+7sAUIE9EWnSrusW7IvM2vXMghYpjGC34ghmEUM0DV2rDqtZqSNRkEJEhukqd52ICNNiBzCnrg8wifg0XUSRF058qjjgus3cTYQVSKpd7jgc5F6NmM0M7ioc8Skg0QEIoE2Dfmj2mqG25w4WqbUGgjw6QkHb240AhgiRhyGcEdK8ecLB7O6tsycBwRSkBCTE3MwcTuQtEJt9Xw13iVKpk/Tet7//f/w//O3/2f/ybz386J0Pv//1zf6Jlivxojdu3Xzza1945aduvfj5xeKm5oXkqHVqtvPuhlKjjsn2u6vz7320+fD+U9meXX743v33P9peXpVxem21mLo0lFrXJMxM4h611P04XozDlNN2LAb2CLPqxM1/DgESNvfmlUjNQ57gZpM3rQpV92kqwzidE4Qpp7HXpCxZVPtMUhJTTxpCJOJB1wkAg4t5RKCEJhZmdxcBM40ooto5qUgpk4U9frp/b3F1I3M7y53EQoVEWdgNVN3VS0x91vBavZZwBzGo7z9FOUdc+z7hefjnk8TyIozqESGs/IMybToUymAqVgGoKBMxNQHRjCUe7nwg7Q9jCSK8WMFsL8/f/IOv/6//V/+bv/k//h/9xX/9Pyxl9PDlojte3Voe34CoR2EebbzcX+wvzs/Pnzw9f/zk7MmTcRguLs6vnj4o4/A733jv7e8/+I/++//OWtJnXnvNSy3jOOyHx0+fbIchRN29y72bq6bzyyu7ON8Xd8jkAJGbNeljEMxdmDllx7VsyYlgZl2gmk9mKcgiqnuN8MA4TtMwAUgppVFWy16WfTVjMwZZwAPODLNrywpmrqU6c7WmjgKxq3kQ5Zyr+VQKiN95/8MbX/ycRzBT1+WT47UT7YbJ3EEUAQ8SSQQWScMwVfNa42rzKXem0o8E0PWXfSC3wERJhFFh3trR4wBXN3ZCVCmCmPbjyMySRUkA88DBDvsavZ4DLkCqDbpwhLcSVxA5p+3V1f/+f/u/e+Nzn/vLf+Uvfe6zn7l9+8Z2d7Z/b7x98+72cvPOd7/z8YfvnZ893l5esLkCKUKIiHlBfpzT177w+srptTu31ouFdF3Zj1aqu+fvv3N+eakpb7e7F+6+CGC72QXJAPjldjCwRavIrRhgRNRlcXMhjta1NJcNMIY7XLgLsUAxq9UmM4twghOqx76U0Uqt1awus07TBNF4pow6gKvCmEdzzCA+ABV4CgSXYsxUJhORpxf7Dx+fQdquG9VtP1ZrVRBxIGr1cK4WEbzZDAhhzReb8dMLIIrn0OfrAOJmmg80swsgmKhNioiDNKw2GwNmxFyFWq1CDdfQWisJtBm3mzcX/mvALSIsnEgbNO1ec0rwRi9rHYvYeq3dh9959z/5zttZKAtvKgB/483XvvTlL5zePp2KKcnp+tjHUd07JnYHg8kIdvso/fLPfeGlF2/l9c3gjqrvt1t3/2x/dP/jj1fL5cPHj27eun164+bjp0/Q3y8ie6OLsZZSPLzWYoi2cfdJu64PD47WyhgRoarcpErMQZgDSL2zmKyOtZRwaSSrY5yqyqhMYImw9unns3/QhF335hJzTklVS1AgLAqNISrhXn0qIQ8v9nm5JHoaFMM47YZpuVpzWNBk5gi4A0HTWEopCIio41Nj4w9M0o9350aYN179OTqMhZllNuKHNDGQuzuMJF0XbW0SwPXrUmNCD1e1cKvhyAl9EsU24KqR+2VKOSyw2VLQg48ffv/D99e3br3ymdd+5s03lkmH/VXd7+o0RJ04QpkBnqayG6ePr7aXHz+9eXxz1S+yJhAqxXK97FJ64403Hjx6tKyFVUr4+WZzvrmqBFl0V1dXl1cbb7AycYME+65TEAH7/Y6IWBTMSYiYg6iaexR3qz4l5krELEE0ISrgFu7h7rVaY60pnl/yo5ob2fUFPFUTkcQqUluu3eqyyYZq/Ohyz9qJckRMtRLxVGqp7uY1nGWeZtTQhZTzWMPj09EDEREzNeHuP/3Oz6qQZ+VX+1UczPej1rhm5omIOGZlR7TlZwaHAswsIHNi4saHzM/IPNUqKtURREYxTlMrXCEERxIB9Y/vP/7d3/v2H73+0s//7E9/4QufXayONldn++2V1CgB91rMquTf/MbbDz54b83x6ssvv3LvJRV99PRJGcfbJyevvvHm97776OrqqabkNgTRbhgvx2lb63YsyNJLErTiPupUoDn1fbUqKUc4S4K7ErFIgFgRJMA0joNqknLY6oJBGGDV3NpotMDzbNEMlYXHc/+cpgnARDqjuu0xXiEOWZexnqwW8DmRqO7V3NyJOYkCJkrRBgJQdF0KNoCUDgOL/nmDBtcXQDQUgZmE5pFYPOe3IHCEO4KZ3Sw8KiOBFUxE2ubBUA1QeFtMIIC3DNM9JZVAgivzVLzWOrD0rmqz1peZyYNbFw8AkHk0k1KPaH49xEpBCNhk3SIl6kjco+Ucg5DY4L/9G7//B7/39VffeP0nvvzF09s3ps1uc3U21uly8BfuvvAzr37m/fXq+9/79ve+/9391dkLN266he0vsaAFE437b37/3eOXXt1t9h99+GDaT6fLxYuLvu8kMcahXO7HzVgmhxF24+AUXdflrnOzsFBRISIWEkksIA5QCnOrrW9oKjUR3chZFsuxTIk4Zg4WFH6ABtD6Kt3tmhVpYVSjhvtUSkTr8w8O18wheZG6APUs3roNI2q1apZTVlC4mCGJMmehraKyfEpA4kxU/0iEETHIWnl2aFCvZp1oA9XaeLbrh5g5hEXYeJ68lZOiGGYHMSaixmVcN0PL3OiMCAizqB7UrkTMtRQVYqYmqgdRtUrkTJGyYrAKJ2rKZAnzt7793W9/648+85nPfOGLn3/hxVfPrh5f+tn5bv+Vn/mpX/mFr1w+ePD4ww8efPTe44/fOxFanfQ3Xn7phZdfOj09efrg0dsPL4awOoz3Xn4BVm+enrz80r3LzebjJxeX42OLUHBitXE4H/fr9Xq1XGVJVioTa1JmZZUgSBURWS4WZRx1EefbLROdHh0fL5bVzWi1ncbRDmPsWrNKA2CJZr3vczkogFKKuz+biscUxhHedAwkbXKez77SEeZRiqkiEKKaVFNOFClnZfl0yNTrkP/E3zLRtRVQg5tVVUWbqzw/F0BNotFmViozgxa5Nyo2DiA6TM2ZXcD9uqfn4PyDA95tZszcEsb2Eu5eA0KYJhdJ4RYe7jbL1liEhVjDYyzTd996+62333vxpRd+8qe/cPfeq1YmFqx6nsTPL7a/9/37jy8vToU+c+NENrvTey/cvXe3J766vDqzutA+QMvV4uTFF58gndPiN7/1W8UDzIlklVIWmopdbjfMvOh6MGlKrVeaQUHz5Ao1Xq+Piw611tTlo8Wq7/K7H37AKfVH62m0iHCvTVR5TfUcmsCffRfXWcHcfnmQwTFTTsIUJESaGJUjAqSiXW7jWJq7R4hKII6Oj8J8GP5FINE/ivE0JcJ1X/I1JkFETGw+70+HG6HaJjMaManqgWInArUveyyFUwpzr1VEOGdWLbW6OznNykZE0xOpsvvcmtIS8OsYYhEE2rg1qyZdamVLU7IKUEoRYaJgbt0/LiQg9tAn95/+6sNfX52s3njt5f3Ts68//uAf/L//gfPqZ/7yX/vbf/fv/trv/P7Pv3rnl1dH1W3RpWXqFjnOxunJ1aD3H71274V33vr+r/xrf/39jx6+eefu44vLvdl2HIdxWGRNmhEYxymJ5mZEz8SsLc9T0U6jy4ndx2KrfhkUm8vLo7svLBfLi83V6uio1Z9NJDn3pxzc/htB+6MdE80Ncu6nI47wo9XCxokPFIKqeDVuIzNZcpcdMZYCwjAMbpQI/CmRqQdA74ff9A8vS0RAE6PO4GlDL57HrFt2XKwmq820kgCjeaUGyGOmRIDZvVBIVFv/RlxbQsVhfcpNjk4cEl3XmRUiKd4KaTJzFrU6qoSkjIiUEkqFe6+56/K4mb7+O3/w/V/46qt37/5b/93/oF8uH3z44V9/86XPDI+vLi+PT293EK7W5ZzY4eMoNsa0zPJv/IW/lOp0s9ejN9/45vfefe/pU9U81FrGwkaSWmYdxA3hanAHGhZKRD4PAsNysZCkjzcP6lSSzk017YKJ547rK/ZHK+E57zms9BEQEli9fXz0+P6DRti6eav/WwrFIiCaijGnUvbLZbfbXa07Wa8+HU10M5hpdNiPcecWARxmEXMSeB1DzBxuk0c261hkTpsqzT3NjcOYn6n9z92mqTYroCb+bZyxuyPgHOweiHAnYXKqtZoZH0ZECifiIA6mxtuDmYINXEsNIun7pTtefvHe6uatzXi5nC7kxom9cOfka1/9V375l6eLTdnsgqGsS6SND9ttefh089984+uv3741bc5Zpuo7Jw9ARFPuU5gyK4kSK6g1N3rrUycOL/CQJKpKTB6RRI5OjkHUpaQsblanEirVfG6vO1yon4ijEH7AooAIAoLj7q1bF/c/TmBBY7uIRGqtmrqUEpHUWoikVGfJbVCY8o9nNP4jHcrP1pZ58Tx8gQdcOJo1Lqg5czfsIBikrXYEOcij6RwoAplob1YBncXGCLOkokROxICZR9YC4nDMxoJgVAQEAlAQ3DyqBbETGkddqtMMgSFmgwQWElEhoGOZRPb7HTMloRrhzlkBkqZ1U9UIEiaVrg1CJmcluXv79vp44dgNm7OPHn780eW5LteS1ieL1fjhBx++8/H5VSWgy6mvMo317Y/ulzJeXJyfLnvtuzt3X+hulKdX22H0MhlFaYmZRYWkoGCwQILJASe4YJVyhEfSD588iid+mheZdaHdssujTSNVdQhg81zgmMeFNK35D35pzkQRHMEUcANoIj/K9NpJ/7aGCEnHS+5AMhZrVhFM3PfdbijVsVwsjhYpoV93fLpe/rgr0PMRFD/8qxk0vM5dZ2j+ACUe2rbmnnYGnCiIDLCABSKCIwgUTFlFmS286XAB9Llb5G6shWL2AMTc5eFEIa07uIEHAXhAISosQg4PwE1mx4nmfwC3aPkNeRBClImoS1LcwsEEUVXtRLVdGrVODNUWdhWZ5NaNG92id/hxv9bPfO7Wrdv3333vi1/9uT6lB/c/+qO33p2MzSsRTtfr0puNw7Dbb652NxarDvra3buPL85pGotwyV49lQhrMLQQMympsBgi4CAWJVGFeRN2DaVcVpegO6c3+tztbc8qZGjOf3GQRwWY8GwPe1adtLki13OdKazUl1++hWFnbimntMzZUoTszy5yzizazjiYPNDlpBwUldAtV0f/vFvYM6+VZ/EDojYp+Yf1hwE4wQgOGKINxYnZWGVeJJrJc3iAOIBqFu6atFgda23Zdbg7EYNUU7OROrxuyxlpfkKLVr03tMK8VnM6NCdO01RrMbiKlGoiwtz8gbS9/5ZHq+qs3ME8L4KTrNfrTvMwTSIdyRTaf/kXfumFF19+8r233//o/sePnxplUe0D67yobgNLZjjR1W5z+6jvOx0Fvl45pe1+3JUYSjEmTZlBSgmAhVd3o2h4cUoKr0d5cWt1/MjPh1obF5b6bhkMK3UyL9UQ3HrgHUDEM2c2HNB5MCkQbSRsEwVolC9+9g1mDpCZl7HUaTLnlmaWWr14TiwiBKqlRECE90N5crb9kwLo+uv/oUxsNiu8/tLww1l+6yA4tG49GwHcsrvrtcqbE0drpWhDcRvAA4qY52ab21irI3LOwziaGQmLarQJRc39mcm9qc3xjPgRBoIdfN0xf9Coa1MYE4FIiMFtmuRsxdEmzTb5VUtIW9XWfIWc0KW0Xi1Tyu5cki/W0q1OXnz1taun59Nmd3ZxNQWbJBFPFmJEpC4pa7PTQ6d8ulqgHveaH11uOZxJRFRFWFJrkaseJGIIdydARJueddkvFjkn1krWaQ54v+pFeh52I5ciQi2fA9W5GsMsTmizm9tuYWaAtf4O93D/zL0X7908katdTnkT+0ZFeqD538GpmjfbmmgIsFvf98PgHz+5/JSqML4OreduJCZSZuO28gQfpumISJfzbhyaQ5SAHK3hJBqMbaUulsswK6Uk6VJKtVYiOvhyzjTqdek+O0E3N3GfTSNxqEpaS3BKSZgtPCX18MbntsHNETGO42GYoZiZShuh7cJ0tFos+s7hkiQveic5Ob1JwXU/bi4urzZ7WayHsTAjp+QW7laqw92TEMnoNk4VkM12P5XqzO7MQmCuZkISxCEBIcRcIwgRgLGWOhUzt2nSiFVWIrtx52RfJ0kYFzYVG/fjVIp5VLNavVlBNxaoXfiBCJgTPJw8OOI491/7yS/2HETUdcuISyE2YmKYV3d4NF6I2kz7nLOZE3yYbD9+WmU8MXPY9SJ1OJiUxcItwEAWTX1HpbarPBDuRpyZmYwJTiwOn3WvzKLq7ilnOuhcW+foNWopzJrUp8LEItLmLLm3MDKAzSyY44AONNB2HEdzI+oCYYcAmsZp4mluEW9SfziICZFTpjYzkiWpUC8U8KFQdQ6sVkeUz1CbT0FU8joVB6qZskbgaqyg3bDbF0Ml8SxeSkMRaniAsxALV7N2Wtyd5lGDdDHsHl2eBfDy8a0Fc16mF+7dPt9eLvd5M01jqb7ohzINwziVWkqt1YrB3NxmqVoTcs6mF4Hk+JWf/bkXb53CtuFxcAJu/krMImzNoztYRMGislwut5vHN07XXdftpz+lvcs1z+k/eAs997MDFHGwm5v33vZHWQH21tzDhMBJvxx8S3NtRaPFOkfmKOROUDA5iMngXk2YGcRBVg3+fP5FLWFSkSRSxcyIWEwIFPUwAdPDhZvZC1NEKWWwwurjVChIWNt1qkxdUq+umgoGEU+JzL114DDzxXa7udovlivWnpKoGUfsh6HWMtXqEK/RiQbH1XZbKUqp7iGsbqAapfiGylB8BE1OxcyA6gE4MXOSGk5tONcBy6m1CjMLXVxdjON4Z33y0gt3P3737V/82a+98vq9jx9isxtkP+33Y9GJRzQAjIlFTGrUypWsyR0DHmALc7cjlb/0lZ/+iZfuJng1KxHTOBITSeJpUmLKPbONxc3bEOqIcFFiIlWNAWGhM2nySd4ucehPa1sEHYzi23LYYogRTYvcyNR5lCSCA04Qmgfezm2VwhFkzSKzDaV2l2gDYikC+8lvLiUrbUYzsFg0C0LzKNUYoSwRYDAi4BHzNCYi4gCEWEC1qY49pLnAzxbA5G4pZQ8EXICU8r6WG+t+cPfRarHS5nkLpSTDnltepEq1OFgbWSuqwzhcXW7vvXDXPCF1RHXabpyz9MuracddFhGu4zSMXqpzRLX9fu993o1jmfppKO60rz5UlOrVvNSY1YmgZpdORDnna9l4+zqY+cb6OAcddYtSy3J9fPvFe8cnx6VsJQsllaDdLCwiYEIIsQVVIk6s7jFyLWRWEdN078bJL/3Ul964dTNFyZLhqWRxMyCCuEu5gskxlhLRqEjdjQNRBKomSZqYLOm/6IFzgeuF4QfosOsEFvHccnW9SHnrA0QpE/E6aWrpn0fQnMrxfpoYsTg+kZSCjJjEYM0DoWFngUZWREQ4riUGfkD3r0HbaZpSyj24THumtMgxeTGvtRYmpMNKgwCRIFgkMyXCs1Lg0dMnX4o3UCdKySyq0fLk1vnTp1nk8fmTXYzc6zIvFsvl6HZxdXU17Pdl3Ck2ZcyjZtZao1pUQ7WoVgNo/TdTKe0jXNcfz65m89Vy2YkuU67DeHTrhf/k//n3/+q/+Re/8MaLhjALG4pZnmWLIYjiZYowIRGhCKBSMLH4izfu/szrr9/Ny4QoYlSbVliYuCH7IuIOs1JLbbT8fr8v01StmnnOOYLs0+uNp09i4+f4imgTrufCwD0QM/yQkpm5eUoJ10HWlnHmWksWFU0kTACcs1Jxa6jHNQHSznugVbEtfZ59mRs+2ZJlYRbSwaJM1uXsZR6GAiCLzIOMIV3XEWHY78C+XHYAhnGMWj746EPHz5u5lII6Xj18fzx79P2vf/3p/advv/vB433dqO025x30pVs3V6vVx+dPqtu+0Gh1LDXUqsOCIsjBLNqAVwDTNLVpVK0dpZ2Ha9PFxXJpqihm1fYeH56dv/fhw5/6whvLvi+l1KFUP2C5QWaO0C7JdJgOuyK6szy688ILudQUzuF9EhXWpM3KLudcq7dzVetUqwEgtA556/os0ib4RilWSmHK+omb158uVkCBCJpnoNRG6LUt5AeZVGDusL72AEdAWNxdRVW1TmNEaFIWDmIKnheQ6gzpU580CWlQBbmwOMI8Zs7r2WDUmaPFPKWwtf7ELFdsOJAzi5bJprHeOF4JScQIoSSySEkTdYsUxh4GiyYImaYpklRzK9ODJ4+MKMAEZx8vH7z7+P5HDx9cfesb37m83F5u7d3ddjNtehDq1C2XYLJqUynVzCKKmYEMPvsI82zTaY33dZ8ZTGaajTLg4WOZxKXPeZi26+OjK4RTlDJ1SdeLRal1GupkXssEaAA5JwqUoey8XI1jhtw5PVpCE9K+TlMXNTMzJwezFIOZ8eErE5G5EooAQYTXR6vtfgAiaZLg1imjP+4KRIe/foCn+qG7zDvWcxjRfHauAaGG0xyU3/MPIs2VJ1gk3KI5ZbO05Pn6iZbdYrVcLbpeAtVtRnyYD8Q+6Dko85C3Nf+y5hYtMUOvTiy572x0Jg2nLIqexlqrVVVZ9L3Vfdclr7zd7XJOy2Vvzm5TLVOIpJwfPH7iXol4sthenr/8+uuPzy5uvbou3/s2qCa3VKcbXa7mZ/tt9hrMOXcCJw9WIoY3noeb/sTJydxrrZoSqRBmLQCLwIyIILwdh912+9orr0pKOXc0bBE4Xi8WKhMzs2iS1SqJLs3JDfthcsOe9tjY7dXp3VsvjLthvx3q1DpgKUDbYSyM48WinbeIYAYCbaWh6gBUdapTTmk/jW0tZOJilYm77sfQA9GPWCA8/6s5Yq75rxlC5zaMmJt7Mq71kzy3WmAG8lrU1QjAE2Ef5AElj3ALjgih1mhG68Vi1eVOk09TuD1THDKj9RHiGpJuRPZsUNpcKYkIQR4+jRUaq1WqYV2fa7VSy24YSGycTAlCVDxylwcrpYxdr6VUMyB8LLXrJXf58dn5UKajZS5WLOjk3mu/cOvu06dPvvSVL/xf//bfufqdb37+hS+889FH7334gUcQ0OesjM6NpA3FtOqoEVARljqV9u2llGYMDUFE4zB0KbdKvvUR12pPz54u+0UlKpUE6Ds6324m8+PTk67LYxmG3VgMFnR1OT64/2TcTTfy8iR1awenNOU6joObCZiCN0PxqEc3TmluDK9talIcEgxhEdXwsQGwSZUQwmoUksQ+sbGQDrlwS3gl5sHsz689LaKaF1IcuLvWWdtEKOFgZTq0YQIgMJMEhREpMUEozB3M3GagdwAg5pEal+pkYUHeNrNFVnHvCIVRhQ566Fmk0RoXhYiCQGJhzfkpAqo6A5vMDCnk5kFKfVviJCFp7KMjKcYdh1mdqu7HcRwnEi3FhqGmlIYydf2iSykx11o3kx2tYONmtV5upvGbX//d/WZzs8s/9yu/kt9449bNm//gn/zBZtwOV1OXspWSiaTjfdQ0TeIYaq0g6RbK1IaRXc8BokBxEyYKMCgqmNmLLXJ/7+49SFS3jy+u3n9wvlqf/t43H3znXZyedP/+v/VL7CXn46Ok5xebt773zsXjjQ90Z3XaC8gLi6+7vpRaZRyru3spnlKappqZpmCzQg1uiggKJlYRlUiahDmC3KEijGhTHMw84scdeUn0AzvTn3jXOdeY2Yzrx7ejmTg14YSHz46sM+fKbRtqAkUGY+4mcWFOKZGHx4ypMwm3mU6I1KiiZ0cwMTi8GB3aFA8y2iCivu8OFDDJ3PUR7mFmy5yJaLPZ73d1tVqfnhybFYKLQJp9AQFEZSpXV5d3b51I1xXir3/zm+eXVyB7eLXZFjq9fUOYv/yFL0zj9vd+/zvnZ+eIcFDHam77p2fL5QoiQepcENTEbimlg18AOUK4zU8IYjjCzYexOtPTs6ePz88Xy9PV7dUHD94vj2/c616Iy004OHD/o8073364vdgzCk3TerEUEfPJymRmHsXDRTWjb97IJ8uleXGPpnNt5QvRDFikoOpNFwoiCMtisWCirut2+wJE+I/d1jP3AvwxMXSdJFPTl9APFGF0qILmsuuwdtDB8zss3LxNE8ahnuR5zYgAtbFwiNo0igJpryIOYk7NqokPlQxATHD6AZnVvMfOWbbVau7tO4vwiLlebiwbEZbLzqMGTJRjLDGLIsjMDG5O293O4YXjrfe+/3S3NeKj4+Vb3/huXty4efvWow8++spPfe1ye/bg6dXDp0/6vifm1c0Tq9PTB4+uzi9y16/XR+Szg+RUiqYkIu3yU5LZuSOCGQbsx2m3n3bT+PH5k9Ft0uHN4zfyk7PcxXb3vvPwX/7n//X45GysaZr4dL3ulQYv5uHuDNrtdicnx6JcSjGz5n84jlOp1T2q1YY8NfrveVw4ENM0MVFKiaeaUooIEd7v933XsTw31/iPDx2ia+7/+hqfv35cozBMJCTzdQ00CfNz1hlEDZJpNDHmrcfMgKi1AOj6nkXaetMijpmVpUsZwFSmWmvjI2chJqLRF+HuVltPDxObmZsRoS0YqsrM7Q23S9yb+NndrO72+2kq1ax5bfGs1vPcq/noPkUUj6kpX+dBLcA4jB9+8H4Ivfvh+w/OzwZ3Sp12y/1UHp09zf1iN4ysenrj5mc+++Zrb7y2G8e8Wh3fvK2ro3x8ko+OH19cXmy31czdSynDMDSLo1l/EXMd4IjqXtz3tWyn8WxzVdxAmKbpYjutTl/t+9tuenlV/uvf+vb9h6VLR2mRCjbVNtWrs7SOVlFlFg9392ao6BHbYdgPI6lERO461XS4tsPDuQGnMg8haadLRNo9m8cIxb84gylqPcXuh3wZ7t6kNp9YtxFRWMxXgzsxJVICWtdjl/K+mjB3KYnqbr93cyauZswU7klZIkTIwgBv4vqmnAfgEbP8y/m6HG27qqoSkblTNKmrjePYrrBSpu50RUTuYdUIAhCCmPQ6M8Tsx0gP7t+/Ojt7ena2G8bUr3yczs4ux6GcbbdjdaR8ttmtT290/YOf/umf/v67H5Zq9x89CsTZbnjlpZeeXFzuxzHrvslSPaLUmnLmBh5GCHENB1DCzjaXk9XLcbuv41yDAGfnH4TwsMlHx7fOLu7bcHm1e/qwXFamN27eWK9XndoUHoCZLRcLIvKAipJ04ziYR9e1kSzNiJ7crdZr9wEmFShNZiRMGFp+xsx930dEKUUk48cOoB/YuT45ImIW2mDGMX3yypzainNwxTxsMQRVKXM3rrOImbM09A9tkUQYxbydJREWySIpJRXeDwO13Nmpets0AaDWGhE557GM4e7elL8zvNCqfm7bowcxq6qVut8Px0dHOXfhQR7jOIp0ESrMYRJKNOtnISKwEoGj46PB/P6jR9WRF0tOeb8dnj599OTy6g/+8K2ju69eXVzeemUA5GixhPNXv/qVt95+Z/P0fBiHoZbq0S2WmZC7XOpkTV7n1uBED6eIcZxAVN23U9kPkyv2dahe21YhBJgcr0/Xx/Lk8Qc+XDJ4Iv7g/GNQvzkb7/3kT6yTnY07Z6lu/SJPZWLNJKIiE9EiZxF9dHZ2erzGaQZRKVVVCJhqZdZqUczHaVqsjlJSYkkpLyBdytM0DuO4Xh0l1Rk4ej65oWuJYSO/GmdNs5CWQILG7s/im4NTOAjiM8/qBivkjcBrzyMBJnLyIFdhQQgjwrJIEAKeJZSaYTcnTSqSiDNIvSoFs7NQE/CyuVcn0WgebKpMwYiUlIBZuTJzd3z4ZEHsMTc9QliT5mXXZ9VxqsOwu9qPQbbgvhY4tJoxu9mkmlgZCKIsiAV7gA26fPVN3Lq12YxPn5w9fvD+9smji48+jLPhaFu/9Y9+vVwOv/9bv7G72nWVT5erk+OjJ08ewfx4sWa3i/Onq9Viu9+JQsTHUs3dakEtTVpfigVLcb/c7XbVTLrL/TiV0pASSUtZrO++8mZann50/vhyPG8Xr3vrL+QN8qNxpBRO6FKfUq6SSIiigFgkJCKb+RRPNuPkU+p61rRYZBVRcCWaauymaayViMdpMrcI8eAExlR2ZQjV3HXgf9oKRAerr+vFJ37I65kOXYQHFTcRWDh8bkOOCGk6TX4uWA+kUkuUo7Ukq9LcP0hxAGlFmJlruBDPDWBt9oe2QfEt+6Iudwhqis/nG22fbeo+N94dmI35nXR9b2MZp8LbwQ1EMozjFBWO5aonikbGcgTBEXxy8/bj7fTBo3MfhvMPvluuHn784UdvvfX1l07u/spXf/5rRy+/rTcfTfuFpt/5nd8ePnr/YrefiN59+FDIF8vsETdv3jw9Pdldbco0PT27OD0+slrCDSFEcDMQSe422+0wjU5sHuM0TZuNeBik649vvfh6Wh09+uD93dUT0AQ3tJIfQhwAB8X9J49fOr5LrCnlWoowp6RRre+6LktU9yGgGuM47EevVt2SJhYmJlEpw9SWERapDQr3qGbkASGzuuyzMrn9iXogOrBLNcLbaBOgIXvPiepnQPC5RxEzW7OWIrru5ZvTsZgRx/lGsIjwIbFoX/M0jsN+F84QwfXa5+FhlZlBDgDR3J+EuFUQxDSV0kJwDvIA5srPfR7XHaDmEyCqqZZJRPeTDuPOMUwW5ui6hZnXccopuVc6hFtrpe365fnH508uNst+sX366MnDj377N371i597/Wtf/crP/+VfHi9Kvr3+nNWzR4/v9j/91kcfPrh6+vD88ubNGy/duXn/yeP9ZOv10Wsvv/zRBx9cdXmz26du0TTizCAWiBB4GKfNOOV+NU7T5FOt02QmlEQ6D+m67uGHHw5XTzT2ZgaiIAEJkzDBoAh7eHHxdLjdsbjVaZqq146TMk/TKKTEIGGPIOIkqY02N7eD7I9VNUiGcTRzTV3fA0zVPRHlnGQiFWIOxCdSGT8kWT3AOU3k1+5wwAbxPLx4KOXaFCa/Di7Ma8lsY9vEoQHUWrvUAQcZE+DznECosrYtK5zBcxlAFBG7cWBqpjpxuHkmvxov2xYeYQ6EsNRa3d3MmlB1KpPbnC3mlMIjQswwjUYkIpmFExk7jo+ON5uL1muG4ECISKl1c3W16LtxmD54+vhyrDfvvvzCvde++NWfG8Ovdpv7F09o3T3AFR/h1pde+fLto+X7H00kq+PXK2IzlsVi/ejhg1s3jp48ymU3bYep46by5hDNq7W7bM4/0sUK3QLEZRx2+y2JLm/cJu3g/v73v406KKrPH1ZAAlIAERxgRN05Pd7VV0/W7atpTM5cYNkEHFC2ICVpGs5qRhHTOGy329vHJ9UxlQI0y1sB824YVynlnJKykHcp+cHk+p9+tMhpMuz4oaT6cI9DLjXzOPTccXj8M/tjHJKVWoubi4iHM3EAWfVovc45AW5WA96K71Zjl1L2w9BYrobxm7mZNaOT6/5oOrQwX7+iiJjVZk5b6+ReU5ZAy7pyGx23H8p+P1m1pNqQGG6qYhESFWF4IZ9OFuns8RPp1hdDfePzP3HzzkvUrWruJokXPvva8s6tO6++mpdHi6OT2y/dObl5TBFPHj56/aWXvvi5z735xhvjfvvayy+dHh/lnPfFnIVTF6zcLaRbU7ecAnm5KuBKerXblTotVstSyzRNDgIhJw14BQLKnBg6zzWDIITIDXT/7KrNMkuqXZdzTg0hTMweVtz24yAsdfJSCjMTqOu6aZr2+z3RjI+34oiJVZMDjjCr4bXvUt+l/KcaeRmHpeePCbpDWkOts9GZFAeSlYVFpC2R1ATzDS4S4YP4ptQqzS9H1T3CfbnoE4wJOWcmCZCZ1VqnUla2UJZDqMx11jVO2LTo87rJHLOXWTQlNQhWTURKKeM01mrhMIIHSinLbiGJE3MpU8OTIoKIwQKiJKwUR72EFdCSUvfaG2+uFA+fPLnV3ZRFfnp1eXzvbgGePr6sU6UswXj69CkFnx6dVE6nL9xlK13XnZ6ejqGbh+dBEkTBaTMUXUkJaM5j9cGw3e3qNKrIuLmSbtWtV6KLoxvd+YMPAQ0yQBrc0KgkuyYnma72k5MAJiIeQRBmzl1iKu5mEVOxyQKR2/Vcam12MER0cX7OKatqDtKUIoqFJ9W+79xrUslJS5k88Gzg3PXBB+NQCiICM4TEauW5ORAHw8xoti0AGKRMLIgAO0opEd6ThLnS7FCSJU0BIuqCmXkKp4AQh7kSIjBVFKdMbB67UksZ+qU4WIWrRQ1MpSZV1SRwJSe0QcO+WGkQmVNKSVXKBA9ElOpouggiUUlwIgiFW3ERsVqZqE+ZaTDopRkDfR8nR20WojM5CzvB4EzcsdVqY/SrVVfqUGKI7oUbr37+5mufq7vLzW5zsltcnT2pw/Dk8ZWRjVHLWKerq77rSKnTzsMY8uUvfEmJHl2e0WIdF/vVooNqqRHSDSW2QxlKScuT0Lx/8mj79D7HSLrmfs2S79x99fGD+5uLh+7b623LyYia07RQOHgMEoDH6k8sbqghMguNY6EAOi7jBAe0z12dLjeTr0drEmOxyQCoytE6g7r9BHcwpT6RwjNikTRoysqx7ANA/VMCiTOc8ifxYnMTT25tMYcdRFWvNSFtByy1NEVHHPq0x6m0aXItelXVrRYnhtbqYy2tzYvcsqqKCIsesrgfrLzQ5L+BaDTTYaJOXHsPtN1tfXRUpmmx6G07lXFU5tOT477nYZhYOHe5ulu11uvjXs3qbrc/OT7RxKvVKuXuxvokdYuo0+nJcj8Ukrw6Onmw3Z/eOhmHabU83u43Drl55+7Rjdvd6sghpdSbt+88OjuT1G22u5OTk2DZbvbSLbvF8nyzHaZJdYUy7Z88qGUA0C/zjTt3h/346MF7V2ePo44zlzc7WMzUQ8yEE1o+YW4XV5u67lZJHDZNIzy6PvV9FsfoHOajECjMjVp2LJxzYmbVVJ0DzsTTNC36nFJipnEYIrloToBVVP/TeyRel+x/bAQRVFUb13FId5qqza4t/j1qra19rFhtTQub7cbCWdU93IKIPIgakNPQM2E375L0XSKepXGsFId06vkQaqexnRocrCrc5z4HRPT9IoBSCiPgFlaFoEICiJAQ2TQKNfF/hM9T5ACIStfl7W63nEruV7lf9lkVxYZdsXF5evPWiuDTZrs/vfXi8sYdXp1aWt+59/Ljs8s7d+4OZeqXq2GoKS1Z0+nNm++8+z447w2MtC+7cSony3z+0fu+P2fmfHx7LOPVkydWy2bzBFEBCCWfVTb8TFZD84WCeWIBPnr44DMnL3YLgK1RUVmYrC66nEnM6laJqNmVkBOZu2rKObcmBdGUhd1dVA3BokHEIinLuCtmxdxm+hfPEebNd6eFsYhEoNb6nLsqCJi7rJ7/yg6gy/wkKnYYf0zXU7U82tUf4bUlbsRmRkzmVmqdtYOBCFJp7DT5LCmC20zEXhd0bUxYM1hiJlybTszM3RzkrbOn+QFSm8xCJDIXaEklKYcbIxp54VaBcHcVuSaBiTnnBKB1ir3zzjsOvPjSKxeb3fHNO8vjG1Ooro6Xt+7KYn1xuRXNE/Gte6+98Mqbr3zm89KtgmQ/Ttqly6ttvzw+v9yk3L/3wXvjOEyllCCDVAsR3m4enJ1/FAhNi9svvHb79uubi4vN5WO40UzYXTeWEsDR1LEBJycEhVM4MW2GcQh191pGB03Fqtl+GIFQxnKRmWk3jLVZxZWqIg3iF9W+X3R934ZBEkmtlYUXiyWRVMPl5W6qjtb2/M96zKkrZheOQzhdk99xvQBdXx3z1ldrbcFOBEc0PXnDbMy91Lrf7Y+Oj0Sw2+8WXSciqN7KtMPrPoPPRaTv+wYyHIh+MHH4LCWutTYpa0rJrDb0fJqmcAeQlLNyYmJRpvBaW09w33fEyadyPQFmFjcSuxVNebFYBnEQ5+U6dqHd6uhkfbndUA+SfOOFO7JYyuLYpnJyc+XAgyfnV7u9J73c7lK3Is7mcX5+7m7B3h+X4kYMn8r5kw9KNenWov3jj96HudtAsAAQHAcvgCa9ahdMO8sNgCFvojp3kk2llPOw37skF9qNk43TYh027s1QzXfTMAxDTrzZXLVTGhHmQYIAVfNabbWScbetVkE0ToYS1Wbh4o9bxn9S+HxC98VzIdT49sMWxnOfKDM1KriRowDCg5kcYe5EnLtMQKllvxvGcWxxWqv5wfxxJv+fI/pFdblcHjTR7gcU22Mu6SO8Mf/hwcy56xob3y8WSdVrtVrdfdF3yhxuVkv7BF2XiRCHYRbXaAox74f9OJVxmlLuLFAcy+NTY0Xf72tN/UK7Pq/WkKRdr90iL1b9cnX/wcNqNgxTqXbz1gv7cZqscDghzP384mLY7zdXF2U/SH9697NfXZ2c2vDUhsdEFQSmRNQhdIb5RXkuRVu3LQE+j6y2SvC0WHzjj955fH4ZLFN1SdmDLAgsm+2WWW7cvqNdf7XZuAezxEwPwN2HYRynKeds7u5eajGPUmspdZzqfj8OY3FvBtxgaqVVhCC0BThFI5iav/WhWRCBwGFOMgEIb1xYhDeaiUAcRDE/PMKbgToJPKoKgqJ6zD4IDDNfwNxsH8kQHEMEbi7Xi0yGGiwuVGDB1NT77TwxSAiI6m4MjjAiY6JwItRw42AVBpzhEVUaCBATBdVitfo0FqqVbEJgnHxfy/E6HyspZzNlFVIjoWphHgSHGSPCTZkE7Pvh6YOHxye3u5wF0Z/crGkxDMWGePzxgxES3ck4WC3DdrcFg0X3k33wwYMn98/Dfbe7enJ2ZsbCXYVWCwmMm6vd5UUpQ9WuX63O7r97+ehjd49otiJzBSzU5hlEMBNlRSKvIQFOiiUzuwCLha4635/vhvFX33ryYLfIxBlTZlqQCJKjnwzK9cYqdrVupyo5qbDAO0XHlAk+DlEGjeJlr5zcYe5dt2DWWivBGPHDK9CPMu3PK1mv0/1PWJAOQsRZTXsQm9K8MVmjyomo1FLKJMxdyqVORBCVWr1aZcCrFXdRFWYcvBLmJg4+LD0z80EtUwmPpitCRJmKWT1kY23ZYJE2HJD5kI0RcbN5FxFRgbC7dyoi8EBj/ZOKyDxpchYoEXQGsKDAuN0woVit7qWYmYN4GEYEinmpOL+41JSfPn262eyGsQzjZI79ZJq7/TR97513wKIpt2l5EQU+dZ2o0GJ9PA07xmg2eFwngQDaMPGmQ1NQF7xyXgX1CA0z5qAg1qUuT8JgblBcDbs/fPuds8FZc6+087IZh26x7FKvwTePTt3p4vKKWKsZE/V9p7ORe0QbgKdS5vMKIhmHwqLEXFsS/WMe8wTdP776Omxl8fxhh6OJJmsp5cBYmddxGEWYNBcPIaz6pCnvx8kI3Hpo0QT63AKgsc4tEK+N62jO+qnU2lKc61enw8Q/mtWP7uFzm31EEOWuCwQpZ+ZeE4Q9jLmZw7KbmVW3+uzzta4FIiG5evp0vzmfyjQUi2rjdssiKeeUU6klCMvVarMf7j94xJqK+Wa7v3Xnhcvd+PDp+fc/+PDiatMvl6ujI+FIGpfnD6zuNpdPap2OVscvvHDHyh5oQzI0mjipqV1A4MySibJr73nNeamszO5cOK9Z1mHpxq0Xb9x7lZbLyPxkP/76W+8/GqLLffF6ublgMiE/PTrOqdvt9vthbP5mBvLAOE3VrOv7btFLTgFsN1t332524zhVM6sR4GiKjIhn5EQDjWkmH2hGddvbpxk3bGLv5h4Sh/rrUNvPD7mOokYmuHsreagpN7KyYBiGNhukeAzFELbMqev6/TTtx4lEiMUdbSYGWpPXQdrcQtPdeWZPQYSma+aDzPJ5DtXD2wBitLXHTVQaOkUUlYIQYj55IWFlJgomCNM8aoMZgedRq0CM283D9985Wa+H0URTSmm73weT5OxER6cn3WLx4UcPTm/cPr1x5/7Hj97+3ruSF9r1Z1ebzW7PIgjf77YUbmW/351vLh/XOoy77dnjRw/vfzRsNphrZCa0F/UgBFGQOil3HSWFRBvJIqKcjyqW1N8MdI8ebabob7/6WTm+QeuTy+h+49vvf+O9x11a2DBqVJu2JFU7TrmrFhEEkmq+2ezNA4RhGhtX1KQIi76fu4vdU1JmNvdPWIEO6/X8z4OcZl57KH5oj5trsedvPORiDT0xM7NqaMZ02nrAUUthptVykbLspmmzHzh8kRROm/1+aiNJGlpwbd9/3XrWYsjnGXURrUMgctLr6GmL4WGne1bVE2EqpRmwWziIuq57fHEG81WXjTx12iZRzm7T4c8o5MN6xkRTrdWGj9/5Xg+qU92No3SyHfab3e7i6qo1tV9cbojT8emtDz/6+HvvvHe52V1cbhw4Ozu7urrs+jTsNuNu4+ZWDW4Eo4gITPvLMmxBTd86wyYEAE4cJMLaUz6i7mhxdAQUQkRwjUWhm3H8cixv0PJocff1gdbjbrpx+8UQoUQXxX/12x++dzZgeWokRDTs98R0dHRSzT3IHOZRPXLOkhII1ay1O6YkRyfr4+M1M8ZpH6jM5P5JvNb12X8+KNqPP9ogRgcFwLNCrHmRHBagtnlVqwCYhWbLeSNmUERYuG33+7HUZdctujyNZbsfSvVhGKZSKIhBM016MBugeQBRE1kSAm7mHq0p+JpXfX4Pvd7UwDxZMfeIGIahLU4Xm6t7t+8scscqIKqlmFV3OyB0reR8bp6LGZKM0/jovXcfvfOeQoO5IlTyfj9MUynVLi6vNtvd2cXVg0ePHj568t77H9y6fef05MZmc/X0yaMkXKfh8vyJ1XFuQLi22ocwGcEpBKEAg4yiNbDMOzhIuDuV7qYbuNSsuVve1OWLvHw5upuWe+oXnpbSn+yePt2fnb967zZPZ8w+6uq3Pzz7xsPLR3szytO+DpdD369EkpmLKBNb9bkzo1WdDUajcK8kUergXonD3KZpaj0bDaiNZgwzG+vFvFW1P9FsMYmIBWAlpkZYNqz20DETCEfzN4ziPlYvHnVWuTvBvbH5RGAenJ4M06PtcDEMIFsu+iB9stmVQhEYhmLGpGRAs4Bu2ECr0SUJhAF2c7Ophgco3MdaQASDWzhCiCKiVmufpl3IXptZGLknq3G1GzzoZN1bOMY87J3EmQlB7sYcxAEz1w7CZON2itFqTDu4bwt/4+3HZsSAhZzeuQXmvu++/o0//OD+o+rp4uJis9m998H94nR845YuulKnq4sLqtP2/NE07hASUEBah65HdSpBFuzz3wBCow0pjF7SMXQBCUWhWq3yol92OdWjF/WFN7NCbU+hevLS6Z17qe7DbHNxToQXX37Nqgt5Lfbt79//1W+8+/2L0bOG7yJGISrTKOwMgxs8KGg/DFMp1Z08zBBWNcDgrueTdUcRFsEHWvTZ7uPPILrnG0/R5Kox63sOFvHPlEEzoh3XfwLV0fB/mrG4MPOp1mEY9uOwm6ar/bgr5oiu09V6td0N55udaGKhtv21DPe6fUSE23+YZyUQnrmJU7NUau81npWBBNA89Sdg5tNUUlLVxKwsYnMLorMKXKyGpsYxi0d4GBEKcY+rHlONZbakpfNJ9vnGt9MX/7Pvxd/7J9/47v333/3ww8VifXR0tNttz8/OvvmNb+33w9Hx0TiMr73+2u1bN1PWxbJ/+uRhnYb99iqiEsEDYEia5U0RQHBEQijQ8h0GBBFMBFlEd8o3XpGTV4jXR73cXAzS4SrflNPX60QWQf3i6M4rR3de2+7G3W5vutKjmx9+8HB1dHq0XqBumQKgR+dX//j3//D33n5nUukwZcF2P46GSiw555ybrV+ph3YXcBvT7h6roxUzd13W9EmzMvx6jNuPHG09c57beeK5UPvEw1tnaptJwDRzpXGtL2tty8idLvq+um+vNsVMVVpqPDfvzAwatWS2JfhmtZn3EqCqogmEtlfqc61nmBWSxMzTNDXeB4SGvLk5s0pKINrvB4uQZsyVutaDEEC1CLAQO3TIa/ddP96/WL1wduuv79PLb3/4YPfuP3r83zyyv/a1f/Wv/g1Ny+OTG6enN7/wuS99+zvfI46Ly4uApCSf//xnq9ff+4PffXD//a7TwYZ2pYJIu+xe3fxae0MuaIMu5tMbGkzUlbTk1S1a3Fyt78R0HtODjmUj99LdL5f9BXwnJy+m9cn6zr3t1eWwvUxZuPiw2UYt9z969Npnv/ytP/x9kmBNXrCv/vV3H1yN9a/+7BeDNQip6xwEnj1Jc87TfiREKRNRyMHmIHeLi+2FuXeLXmMubeb/IqLWEofm5vYN4LpOI5q1wUTM7M3T73CtXy9Gc5pCiKZL5GZkee1hcpCaBkCtx1RKqWf7cyseLB5OJCzz2IbGnDOLcpuCENVqEgZz2Kx7VFVC+CFWgaa1pkONOUdSM9MkUHMJYudahUDuUWodhrF41AhWeMAchDCDB8KGsTvyyX2z3x39xPndX3jr0eWD7/6ndPFut3v69kP5h6cn/7/K3jTIsus4E8vMc85d3lL1au2u3legwSYJYqVIkCOKnpAsSvCYM5K8aCbkcXj74/Bvx0Q4wv7rP46Y8GjC4wiHNWPR4xnZMSQlEkORHBMiIIEiSCzsBhpo9lZde9Xb313OyUz/OPdVNymYsl90BKoRr17d6ps3T+aXX35fQcsmXchTtkm+snr61KQGlLPnL+zs7O3t7bbabWtob3vLV+V0PGyQZOdckvrg47obACEa1Di/ZSCNJSOgIeqqbUPecWmnnXfaLgmItntiOHTtlSslS12OTZp1TlzsrSzvbt7l8S5N9mRy4IshmiTp9kqWo8H08vWnb7/3Y0Q0xrKoV7q9Nzn43rufuHT+iRPtnEKCLBxE2PsaQJmDQRARS5glFrnpasvaM4tR/Xl5l+a5ffxgexQ9zf9UjZQwmu8/NCRnnTt7UMOEj5r9DQAQKyFFI6IabdFFFCBw8MF7whSIwHgCIopzrTkS2HRVjegJxk14BG7U/3WeN5Eoy7KYXawxBszjCRURo/4rNGtyLCze19OiEIC83THWQQ3R7oRr730AMiwqipWkmbAd74xaFyaXfuODn7w9ev9PYLbnOmvZ1ZdOfeJvDDdvfuNfvVIHOL3RaifJqfUzDHQ02PcMK6snHtzfHPRHO7sPh/1+MZvFfg4QkzQHtKEMYHMkQZFIgIxtgwoAGSAD5LzpmvZS0u6CUJgVWbfbPfmxDx4emvUFH6ZQTBK7uHr+ydbq2uBgR8cH5e498DOT90z3FFibpWlxuHWwu720eOHshYv3795z1kRQTJEGdfLnN+4aPnHhzLK1hlCRQFXGk2ldceIMgIAKaOOBGQK7JMuTzsHRwV8zTNW5Ppw20aOqIIhxy+vY1UIB5DiYAAwZIpTax4pKVEIIpklIsdwmQgRREXHoBKPiL8rjGyCgSKYRzJpTVFmYoiCScnSINUTUNGUQl22jFC0SoUTo+RGySdFwjwgAkiRRr0RGFQAxz1tIxgsHleCNqgJzqKKjC5BSCFidfOFo+blbt35aPryRdjeyMy+ce+Laez98azouiDo7R+HVP//RlYsLFuDy2XGrZXb392/cvH39+ifWT2y8d+OG9/zElas/Ho9mwSNQu7MwmkwBxbVWvS9Ba4VaVZp+hBwZK2BBE7ItTTri0iTvppotLS6311e3DotWvqrAQk7yxVOXrq6e2Djc3xztbYbBngUwaxewt0HOAutsPMKu2k7n7t7g9Nry8tLKsH9oDAUREDFYBMUf3Ho4UuNNquJVQl1XwoGMUVBEQNAQfCjruvKSgEvSqg6Ibs5IVIjDTgQMUaUaIZJTFeYLGceVjXJgdcZE+qOAepBKREQDqgFEIgZQQKcKRADIoorArB48Ixqg4yIlAGfOkgAJEhDwHFlSJI3qH6oiZIhQFcFaEzn5YGLFgIhUlpWqtlptiIgQMaIQKEVXHiKKzSIoqFpSihCqBSA0hhxR6lQBwUB0/M6AONiZgBrM1Lrq4NIv//bm+t/84N2dJ07RqPfFvb3bxfbNh++NwtHtcmulc/7j0nn73JkT//l/9vde+7PXvvOt7y+tLB4N97Y3d8bD0e/93t+VUJae792/11nsnTl7bTrdRQiFT1sr50MxDkelAkM8kskZrRQcUDvJWkKZtUuQ5ZxY59qXrlyva90dTkySowBQYrNVm7dOnT378M4H08NdX0w0abVW1pOlE0wp194madZaKPtmtjPUsro7vH/1qSdCkOnoiJquyQLAVJMf39lfMMCAviqrOggYi6ohCDgxiQ9a1aVnD5yHgEEUbPJRRfR88+u4/zp+RUwUVJnZNo++suh8TgKgYAGiES6iTQwGEBZlFRANHCpQELUayBhL5IWBhDlkNs3TJNQBax+lFGLutsbF2sVGbjJoBJLQAnBD6bDWDmdFLEIRYiKTWIPFnBmvOaIoCJA4C1GnHBkNIYEhJGRjbNpNsJBAKkKqUFUFKFc168LK6ac+lSed8iE/3DoaDba8OrArtae81xvvfWAWcK1XHvV3/8E/+K9Tk46nfudw2zrM8tbB0cHbb7+5srr2YHuPXHbh4hVnWhvJ8rvv3V+5cHVWldP9PSAiIAmxdnOsiUlabmE5JK2AbZVOp9c9f+lcq724u3c0GBWLiysL3e60KErWztLyQq83nU6qquiPjky701o8hyYBoDzJQ4II7GdDYe9SB8ElLtncfLh64uR0NABjVGJl7AFJxNaQ7Izx6unFpBwhB2U2Bki19rW0UgUxBpWcArDytPj/7Bf22MHS/DfGEDTaFpFfABJrQ0RAFGsUqaoqL0yEhNiEJkIABfYKKAiWUIIIhrTdSizNgMmgMdHugoyJq4bGWaeA3msIwSJYO9dtQUTCTruNSEVZiAga5HmJo9FKVSWEICqgwMzGUDT4Y5FIlaS5SXb8mSy2FLAUnNQzSK5+7nOj1Wdfefdo870/G47wpS+9fGq0/f3XXvUwnQ1HUuxpNQLpX7l4cRZ4OCnK0U4nb73w/HOr66vf+dPvFWV55+6DzsKSr+vpeHpm4/Tp02t/9LVvL5z5TBncePf7GgqDaCgJoqII5KizRulC1tvgtFMFv7G8eGbj7GhWbz3cnxbVQnclzzsCBm1y7swpdGlZlf2j/rio2+tnrEusy4Shmy8MB0fT2b4WIxMm9WCHQgFceA51VdSTo3avOzw8AEIQD1KjEqD1mHz/3e1unspsaKzL2osgrH6G4kUkSdJaqllVVbWWdQjB22ZsFFdq9OcyTjM7iAJTdLznEDOTKDqKoXQcWxglLJAANE3Swle1cq2Cx+sChCbKMKh6EQBUVhOr2hC6nbawD4qGwBDZ2MmrxP1UeSQ9HTdNMcalNTauF0Q5sMBz50NsjLQ4Sp4rzDXLTKyLotaJDxElJ1Wt61pEEjAFKKtUrC+8/HfTay/efmuzAoftlb2773/rX3/15EpvePMNnd4SMISCJrQzY/NlqSfd7pqUYePkyc+99Llv/+m3X3j2Uwu9v3H6zKmbP7mxuNj9zZdffv217/7TP/hKd+2aEO3c/TGO951OVSEwqm3ZfLGzcgLTjnfLM05O5unF073B+Gh/9wDTBcRkdXWZbOLSrKzr5ZX1vNU5Go4Gg35dFd1uz9iUuQblSf9wsrsZ6pnVcXW0U04PoB6HUIGEiAdXNYhPEgd1XSHkCKLKqnVAOqzgG2/eefbC8noys3ka1Lp8wZUszKlzGeDWwwNjW0TkffnzWxmPkzd+LgNFM5KG76ENda1xFJh/43EzqqpkbV0U0ty7+SdL0+URkkH1opaMJXJEwQdDJs/TWRliXRbXwVCP5yQ4Z6k2g7DYkBdFoeQIMXWJsdaHqqn9HxvlxuYz4gXHgaLa8Mlh3ktG2okzlUACrPnyCTr91N1y4drVy//me6+OPTqqxw/epumGy9CXFoAUWcUsL61MpyPvSxI5d/rs5UtnBv3h008/B1LfuXe3Pxw+8cSTG+snyun4lVe+MRxXYgZV/y94uJV4YINgU6C2zZdsb711+jyEDlm8cqbdne3eeuuHuPTU6saZYjZGtK1212U5i7gkXVpaUrKoAsGvLS0aMKPRrKyr6WRgpFSeZlZBnG91SVnJQDFEYoASVABUfGUtGWUAVE0AAgCrVGDs4cze3BovX121RMJceKiDWmI1kCSpNTbPWyycuY/SiZ6vrj8WSgoE0QxwzjAHxbmFW2SjIoAzpo6DqBBUQU0QPobCms87dgNtSGGgBp0hay2pMHt2NjEkMdREApGNKjXGGFRE3xCco9o8sypzWZbBqahEhWVDTffegEDz1ebAwaUORa11xaxkluiigtHQxzVEfeesAAOjA9uvq37lb9x4h3x5OBj27/8Up9tc7g/r8acunXhwf7xzeAAgp04+ubK4flQcfOKJix9/6ul2y4wmB+/durm6fHJr86fXrn/8U88/R0gP7937p//rH4yORgL1oP8AIuBuFzltkWv1Vk5l3VVxedJaXMjSje7szjvfee/u4ZmP/+rC6avDo30JnLfaK6sr4+nMWrOxccoYt/lwezoctFPnEKajQ1KuqyFz1Wq1ApliOg3MmK+2u+uT/i4l7QQDSFmXM65miIF9IEDmiVKixkD0wgmqKNsjubkfur1Vw0Pxs7osuZLu2qKAAuCsKJyFtaUFGwdYOH+4I4ccj0URo8whNwKZRKAxdiKgog352USBKUIGUpFagoqS17hu3ByGTSiqRUqRFKM/ARukuKJj0QQR0/BDYvg238QcDdJFVMlgw7dgJkAgKyBlVTZCuRwUVaUx01Cdd5QQHcSxCqKKVVUhoiFrkMjaIGE2KUKqDi2QMdZgAZ5lVk2BS50MHzy8M9z6wD+8YaAALlt5+eW/+Xf+2VcODuSAQYOWz336id76c7NBubKS/8t//pXeas/aTCC8+Eu/tHH67GK39+7bP/6D/+Wf3H7/PeVApgbjFbo266Xd9by3urB8wqWLLs0Uy7XV7vjBD1777iv1zJ566uWlE5equp8klC2sdrrdwELGrK6tLSx0tx5upxa7rWwy6k8rmVVTm1oV6XZ6QA5aiVMNJQUwRivkWkJRVoNIwwMEVWIgZx3LTDHE+hRFQdlQwdq6sdlfX164tGBRauuIg1RVqIWdw1lZ50niSG0sC6JEeSQpNwEEoAqsKjGSEBHUAAiIIiBSVN8RFVK10VwpnmUIrCwiEATmtKK4zqqqimoQraoSCaACEsw9icgGZonW59J4PjbDE1GI3mEIxpomvkXIWJtkzrCfzBR0LqQmqhJbfUIUbWbLcwasABKLIhIH78gKoY/ABLCyVUuOUgyzWkBD0LLY3dns79wpdj7A6hDICSZB+M/+8i92jzYF6na399IXPvfktafu37v35g//8ld/7devXnvqzNlzV69cfbC5mXXaX//q1774hS/eunHj3p0Pa55JQIIWJZ20dypbPINJ3ls5u9jrJRkutXW8u3Xj26/u33mPbXL6+su9M9dUy8zlZVkrmCRvDQaD7kJ3cXHx4ebDcjar69KXxXQ8MNZkeUsJEpeMhqO0vbC6sTpJyNXoVeutm8YPuDggHkegBACALBCBSdACCDc6PtDUIipVUPvmjfd6T19OFtIs1WlVFUUVQA1hKzOZs9Z8lDqHwXn5Cco+6DEZD2PHQ41LRpwaKKKisRZV0YBBUc8RfRF+vLpuLFYMQmKjuVMlc5MeFVWjouADO4OGKHiOrDREE8XCVYRDAERjSJittcdHIyJGwc4kSeKkLLqPgSqRiWqSMf7iHn2apWSMAlR1FXFVQ8Y5R2RQkUXY185S7T0BFsN+1d8pd+5oNUIN0QawKOpvfutfE6oCfvyTz37xi//2ndv3r1//2MJC1xj33AufTlyy/XC711sajYYnTqx98OF7r7zyx2UxE1ZwHdM50Vm7mvQ2eidP2zQVb9bXs8nOu29+/7uHm3c01AKQdjcWV04nKdkUfTC93opNLSIuLHSXlpZmkzGhOAvD4WQ2mwBCmiUL7e5kUpK1neXO8srq0cEQmAzJ4e525qdh0gfxwAxRcC0K4RriEMiSeDaGgvcxXQdDwCUgDafwxs37v/rCJ7s5ajG1RErGT4osyRAksFj8K0VzHGTFmiUSNX7mPfEvSCCNSwsZQgAEtcaR1IxgyagRH2n2c7IIgICCJcyyxDobqiKoODJRq5VVbJx+AxjrOAg9WmHUJqtolORQFnkkNhGH9qrzLRGYfxuySGQH+eidpRLDJScCQh8Ci0xm0+lkGjMcHM89UJi9gBAaLYri8L6We8hTg6AgoEFVyJAoL/ZWzl+48j/+w99vtzsXL1y48e7NyXT6hS98ER222h1j3N27dxNr/uhffuXh/buR5ai5UZstr5762DMvHh4dtvJkwQxu//A7N3/0qq9miADkIGm1eheSbMnlLnGYuKwQVIWqLM+dPW0MDvr9cjoaj0eIaq1ptZeWl5fL0tu81W61FzrJ4fa98mDXJenJC0/MBnvjrR2pJ6D+ZynuzVfNgBoUKdIDIowcUEGg9fCoeP3dD7749LlWniElCuB93UoSZ1wd5FEX1qj8xKNLI4kyuhn5OXP1EWtM50zWqIbBzKCSYBL9kBHRWascmmcfQFUJkBCsMUFkMp6UwkFBgwciq8oiaijyPaInI86XfgSEmclIvMIQgp1zHRWQGm8DBYDxZOLbOToDc/fQEDgWdEjRwFEDB46sEl8ToQ9emwuMu0aggBy4DpVnVLUOjZ8eGSkAgTW6EUnjJIju9NnLX/rSv3P61Pmv/OE/++M//uqzzz+3+WCz3z9aWFgcDUc7u7tf/T//r+l0WEwHkSZjXXrq/PW1jeu/8fJvvfnm9/q339gcHOzv3y0GfQeaAHpVAY+uK2aBkqyoCkPdViv3lRfE5eUlQpyOR7PxsComVVnkrbYmSavVHoynqjD1wdj0cGtz/PD29GD77JOfPHvm3O7DD0dagVYQDZLme7px8CkcyFAzTMT5SqY07BxFFYH3NncWW3T9wimngsDOQlVXkb730ULjDf8w8nB4zq75WeLGcQw1waXKPghLhHlgTjaNMJGImkgKUhzNilpUTFOzOIAgbI2J6QEtBg7x8lVEkfQYM9C404OiHBmHjR3znDTnfdBottW4yoOoEhGDIhGruiRRmMasaawhRe9DTFvz85kU0XOoWYs6tFrL2zv73s8QQsBEEUA9SQBlMomx+eXLT20+2Lly9cqv/tqvVFXx3HPPvPb9VxcWu3krq0N1//7dg/39JEMyKkERINR1x5jrF8/vPHj/te/8i8P771l0gYCMYfYCqkCWErW9rLNSa52btnKWOmvbrSAEAL6uRoP+aHhUlXWWZFVZtboLoqbdbh/u7SbI08HebPfW8P6t9trF9QvXI7cTpQZgBVIwAPxzNzxwIGtDVWP0rFFA8QpG0KDWhCjGvnF7S8h96vwqSd1uJeNZQGMTg/ZRPnt8doGgc0P22I4pNvckJrj4wMZ30bwbY2EARTSI0SObCJCYg7JXjnRHH03zcO4GroQILAHUCXMI3pAjkLlFYGQ2gGhUl5IoR44xGREhkjEkwgBNvhIRYYWo8QCNpRgoIBKzGBv9UgkRq6pe7ORmzr8VVuE4l9HAKAqhDvbE4tHgUKoJqgEUVFQ1ihWoIqZ5d+3kmTNVqEej0eXLl//h//DfTyfja9eetMYuLS1vbe1s3r/vrOFQKkQcFhDgw5uvn7t47kLv4xi8NTkwWq4AWaPEreZg1nrrl3vLa9a6vN1NsZ1kSQWQuqQuJkd7B74qJpNJp7vQbneKWUlkA0BVzjJH0/7B4Z03p9vvdFZPLZ/9WNY7c+fu++ILDR7QABqJfE043gSGWJ5a59h7UIFm5yxmbgRgIhA0ge2Pbt1pGf/kmaVuu1X4kozxvqImaOKssYkVmJNa4/51hKqbPKSKonEooceIUQP2IOm8PzeEhkjEeNaaIQBWKqVwQNEmxgFEDaqCsnhV5hBUIBoDGmOAMKiyggCGmHyMwejeCKgAiFFvM3gvLsk1atVYw2pRUHXOhBZBRWENoqxoDBoCUKmritD4wGUQRAiVVEXwyrGENUpOpOi0tjc/QF8oWFIGqUkDIaixkqxcuPb00y980ofp7tbu5v0dX4b/+9vf+vq/+mreWkiS7t7e4d7OnvqSfRlvlCIJoGf59re/eufDG918jQMELYMqK6oS2DZlq659qnfictruLnaXncsoF8oy6xKVqi5HoZ4BqKjaJOl02+fOnOx28roui8kR42z/8EG9fw9kiq31bPEsiBcZ8+AB1FNURWQCPj5LEBWVUYIIcB0QRDmKIBgBC6qgAQCDILBHCR7M6+/f3x15S5ZCIAX2v9DyEgGEY1ptNttjDRQ566raCNPN32ytNRrn9wAALDwOZRn8MRIDUdu1mYfEE1aVhch41Cr4nNAiGWOaLCUC8UCM4fnYj1MFEEFDVV2nxhIRqKZJAggcGhotCyOAEMWlorhXJKKBxVoXTUlns6IqqzhaKavSJUniEpNiCIRZ1s7bRwdHABaoYklAfYZlYIDe2aVTl68/dRlEmMNwdPTGn782Gg8vX7ny67/5t1t568MP339w785odMhYgSJwY61IYIwYmBXf+/afnrz+KxdXrs4O7vQHAwE01qFrCbZ666dbi8tpq1OzJtYhmRBkPB4Ke19X0+k0z1tLyysrSyvKYVhMiyA+qA882H0w2b4N1RHavLt2fv3UKV9NdncfTicDMADMDSiHNs4FdC4chxQHgqQQoGEv/5VgMKiKRdB37zzYeP4TKfUNhNL/Yq+MOZ1jHjmPaKzHRfV8SQqg8SSkwJ5DEIMA6qwNEhhhjhApCNhH3GpEAIcEzlQaWHxKzmBDOxIRjWz8SL8CZeZHTnJ6/EW0LmAAiHv180VPjFjScafGzKLqA1d1DYjeB7JOFWrvjbPWOQlSVqWxVqVgZeou7O3tT6cTQFRlEEbkGsDmG+vnr2MYbj+889abdOf2hzfefSex5jMvfe7aU9eHo/FwdMs4e/vDWyy1qiJE/zymyCSnwNj5xAtfOvHES/2DCa8+uVT1qyqUZchbnVrYZi5pd/P2IhiTZDmBjidjFQ/i2XtjTFmWaGztawkhBC4qFvEk1dH9WzLeJJmZ9Gxr5XzWbY92tuudn+LkyKAyEETPq7itqY/ODVBR9tEvmkB0zjJ9/BXBWTDJ/f3RVn+ylCYgXLPYn+3qsOExN06oj4aXdv74x5YaqdG+iLsERGQQ54N5YRElg4SZISWjcW1JQRU9SGrIi/Jjl+i996oJojNGOCCCsdaQUYsw3w9sohYBEWN7ZxtZLrXWYvAA4JwzxjBXAMAi2ngdN7/C/AusfQCiwBJx18DBJYmoGmer4EVVOIjg+sXLr791k6UCqEGEtABEbK2uXv307q0f/f3/6N/9xDMvvPEXP0Sg0bD//AsvvPTZz5dl1V1c/vCD29/6k6/PpiMJVRSqRmAiUcSAltzyU5/791cuPs+TaTncqZTaiydWs3ZdSFX7WqrWQmZt1l1cjMxfELYE/f7AoHpfOWsUybjU2KSu6jTPx+UR8fTe+z/gw3skEzW2vXKp1VkV9Zv3PuSjHQNMYAIYNJkhRKiiOQge30quQINq5F4FxEf90qNIQgBgUCyV3ru78/SpXkYq8tfI/MbXo4+bL/rDY3JBqqrWucSY+Tw/rkngXIIDWARYrLFRLzo1BkVqHyL5kFUtYoImT1wrSepQW4MGXQQSrTHxxIz7ZTZ1c/pAw4Aja6w1qrUCGKLpdFoUPk3SR8DDYy9mBkIRNdYG5qr2ChCY3VwHFhA8B1DI8yXT6m5tbREF0QoVAVUp7W08efDww6uX1j/74nN/+fbNu7cfLC8vnDt3ntCkaf70My/8/j/6xz+58RODOpuOVPl4GiMAirlrX3jml397+cQTg6MBhCPGstVZWl5aSVxS2BKnuph10laW5DmAIiL7OiEI1Qw4CMhkMEiyLGt3BHB3/yBLXYIa/Gy4/eFs64blsVKQ9prtnV9eXN7dunM0Lezq5cSWs/Fhu9UGwGoykOm+gpBN4phZOUTgOeL9CITzQdLPHUcAjCBAyb3dw41u51TSFv2FCmUNHvdYimKJ3poIjwoxjHxWJRRthJ5FRJVEhFUiKZrAxHBJrXHGCQf0ISr6kMGUXMsmmU1CqCvviZwhQwDBewCYH0HxGKIQgiUCEOUGyQwhaFP6Y2BmDgBJvGKao6LMIqK1DzHKrbUKKiKRW06IAFL72hhXlnUIYf3ytfdu32NfI3pEJXAMIVlYTWzadpO/9eXffvvdmz9+8y0JSZ7mzz334lMf+9jVq0++9/4tH/jsubM333lTxBOCglKzpEv50tVnPv8frF26PNvdrkdbptMRt2xNr9PtTSdDazTugBjXMsb5UBuiVurGg4NR/6j2JQLk7dwlGQKmadZ2LoTah2oyPOzvb1qYGZ16TbGz0V4+mzmbYFhfW3SLXI32q9EsVdWqwjAriMQHaA6YiApTxLWyLAEwgLaqQtNux8FZ87QKgoBIqXDvcHhibY2MoWbfXVTizl7E6hVBiRBgvjgfWLxAAPQCsVmPY3VrDAGSCEqUd1GCyEdFIDQoIGrAIEb3JuymSZZYEDWAlhyjLYLOvC9FPEDlRdWxgKgQojVGQQRY4jCLoqenEEGWJlF2XlRr76PHi4TQW1jIsgRQBRRRHSohBoGKIYAJrM4aAEkSB6AcvDEgqBZsCpA6A5hUNRpKCtu+ceNt0KAQSAwQoFJvabUu+Dd+4zdPn7m6tbPlkrz0Y3Jw6sy51bUTP3rrR6//xeutPH/vJ+/MpkcAgogWEQyrc+sXP/fsL/9etryxvfnTvaM9l+Vc8mqvt3pimQG45lBWibUF+yIhjzZxGYmfDvaK8dF0OiirUZAK0LgkT1wOQZxIbjD4spwM/XgYQgiq1i2nrUunz6yvLlQ5D5NqVPe3M0PIPDw8mEzHpa9VSzRCxMawIbYO0SbkclEraL2IGkRi5ToSHI4de5SdaBoTyO5oOqo5dUmzWfHRJKDHXhHDDczQNGKPTLURMf6I47wFCMwCGj3kUOOylbFJkrZabSTTcIRUnCGD6FVHVXFUjL2yJRPPmqqq6rpmZj6GpB7PpvGq5lOOmH6ZBRGccyIaQiybhUXiOExEKl8DQOAQSUt1VYUQonhDqZZNxr42XK2cu/TBzp3peA+hAlBBVhBUFuGnn/3k3/7yb41Gw35/GEJo5fmLL774+c9//ifvvntwcPDx69duf3CzGA+AhdRCIGRR07n4zJc+9W/9/bx3qq7649EosBqXr5/cIDJZkiAXPlRpt5ctrKyundQylJNxVU5VZTqdFEWhACFIkqRlWQIAEHUXuiaxlYCvZTLc87M9kIrReXK9jrl2rjc8uDccD7pLq5N+ONod5UkLJCDWLmVLSBrEV1yVXBZcFuprQiDUqpj5qiynY+GQZCkRcvBxXYKI0BIYAmNYdVrO7u3scGMw9jPn1EefZaoQ3QOtMfMNyuYWHvdij91g1MZeiRBFGSKjx1rHCoEFAAySVwbWzNgZ+1qV2SM5K6xBbESmo6Uh/fzVqaoIB2ZSJGPi1AwAWDj4hl4YJ68MCqpBhUVYpfY+yZLYsoXAVVW18oyMKctqpz+xnbTNoZU6aq/ffuuGscYECWIURYUtwdkzp7IUppNpUc6Wl1cXmF54/vnz58/fv3fv9ddf/63f+a1X/813tx7ccYa9iCgoImXL1z71u+ee/iU2PhSTaip1UaVpnrU6ad7Jra2rkuuJy1yFlLUXLVmUaZK5wdG+hmIyHoVQV752LpnOSudyRJumaeBQ1EVRhfH+4WTvroZDVE+QEIdLF6/uHZUEualmLSiXe/7enZ8aUg1TXwcvDMLx0hSMIkXsWEIg5eYQYgEk4UDGESFH0Zy45hlBe2s04P29vbW1FfuIeDUnFBoi5maAio/ON4CmEQciFFZsaKAMCiJK9GhgZqzBWGsjGUMRcTHGWOOCqKgCIhHk1hV1jWCctRyCIgQRNhHUliRNfFnJHHaKmiwKVpsOIq5jkGqzExg5kxFeZQ4RiVZEL+IDexZWqOp6oZVFXRhjTV3Xi4sLaKzRMJoUIEzk19Y3dg53J+M9C0AgpMgAhJgSP//MMz96+52tre3hoL9x8sz6yY3LV66sra394Ac/+MxnP/vOW2//2auvFrOhIRYCFTQLp6589u+cWH2Ga1UouShGo72ymC0sLuedXh0wNVQWEw7BpB02ZjKbqQ/gK8gNqS/KmWooqkIBB8PxQrfXbnfbnU5RldYZm6RhMj3cvRMmuyRVZEWcu3TxyYsb+8OBLw796OAnD25NxjtlUYASKIEAAiFUgKgCZAxEhQ0iEI0CcwAQCX8+eCA15FxixQtLUFUg04ikWTOp6u2j4S8qouWRDAzPUxEBIktjb98g0z/LuKcoiR7VM4hA1BgXUaRoxsxz/NoQWkIvIc8yilqwBIGa4QIhoSFFkPngq1kwhMbRx0NAVSITIQ2ci2DiIyFOCKwAGlhqDjUzBQTAaDERnd5UlRl6i1mq5qgo6xSS5dMP770PWqPtCUyCCGCaJeYzz14ZDQa/8oWXpuPp6trK4W5/aXlpf3///fff7/V6Z8+e/f1/9MrRwTahsIJCkq1cvfaZL7fWr5VVv622HAEzH/Vvr69e2Th1BiipfK1VLaIm6bk0Q1BjNKjWXmezcTUbT0aDWTEp6rrdXVhaWrU2IeOKsgzCSGpcmhioJg+RJ6gASOJa5z/53Gx88MGbb9y7++HSyfWDcW1CmygFrQG8QiAUYAGlOR4dYTxCoLm5cqSDCQCBKgcvgqjiDKoCxzeEEO/eg629X6RQFkGC+WS0OcsQUebKOX8VbpqHGRKRAkRRVUOkCswSAgfmOVINhGgbkSLspFmUIo8ytUG49p5ZhDkWM/FzVbQR+wVg5uhERIaMsQBQ17WqWjs3t1MNIvGPKKjGNQyI8lfW2BDCdDZjkW6eriy2nSGTZMF19g/2bbbYWXky0AK1TiTtcy++8JnPfuaXfvzDv1StVeT/+Odf+cP/7SugePv27e9+5zvLS0vf/MY33337h0Q+ur6m3UvXP/sf2uxcGB118xXPNPWDwWhfg11cXMqyXJFEtKzqoqzBtMlmqTWhmiKIoEzGo7KY9vuHWZqoymw2VdBWq53lLQVttXIyVJe+mg7ryS5wSYii+PEXPi2a/+Dtu7p81SxdEHXoS/FT0UK1FqkVvGiY3yVQaEQOFFCit1qciGoTSKACFMlVIiEoM4KCCpkIC2JZ+agaB4IgoKJikJRMUAFQVkDBFoJDRQALkCCCiERjS8JGzxtEUBv2oTaeXPGYYlVEBWQg8RyK4D17VYa4yC5g0ABC7WtHFEBLVBcPKWAPGFgTEQ3o1dSitQihRcU6cOmDAhpjBADRWOcEoPSVNFqfAmSCkEFXMxeqpaoYC4oGCa1NgDNUr1hoMCqW8rQFJ9qYZF2fUkn5tc/9x7x0Mb/0Uvvpv2dOfOzDB7tfe20zJPbrX3slyfOnn3s2XVq7eXv71oe3X/7NL33rG1/70z/5I4AqrlJidvLi879bt5ZdmpUe+rOyLrjbkqLcT2g5ba+NRoUzmiSkSL2VjW4nBamF2UJaDMeZVkUx2N59wFINBwfAXoJX4d7SkpdACFKXw8HUWR4dPeAiWHWg2l0/19t4ZusIF849OZsOJpvvHNx+A+oD4CmGGlhQCNSokiJIpKdHbFg5uo0pkSIqKiBjdEhSjxpUWMGxJkGJmUFq5QK0BKwB/UccYdzM3aMTARpDRjASeh5HJufZBhtwGgDBxNCeyzHMJ/sgoOpVhNVSNIqLlRYTkTOGhcuqRIiFE0Q6UQhMEM3lVBCK4C0IEBprGdn7YKPQompgDoGbkctxjzbvCiMlN7AwixqMBVBsSxvYEIQIjKVuJ0tbnXOXLv/OqUtZeqaVktViu78zw+3EZWyWXCcpJ9NXX3/nv/yv/pP9/v/0zW9+/b/4T3/3zgfvf/NPvlbVM6dIYup0/eyzfwtPnB6Wk/Yi5LSW+FGoj/Zn/cORv3b5SprlrU4rTd1gNGq3u3mWiXDwNRIKizFYzMZZgrNRP83ymQ+dhR4Zu7p6UsEmDjnU02LaamWIdHR4EOqRRVabnX3yhUFBgP72Oz+oj+5APWIoVRUbKft5iaEyJ+uYRxPK//cWSkXQxIpbHr1NRQEEUOWjvDKOW3RVDcwJYWINsZJGVZ7ws6Q2RGy4WjDHm4gIgqhGVSRUiO7DLKg5RD1DtNZ6760xjqiSAICdNBv7SkQSa0GVQ0AEVmXVMnjmMjemllZZV5SYNEul9N4HcMigcwU0nAszNL+ANIxqmRZTEmgnWe3ruvZxCUoROETPXrEG1ZFoce3J62/eG1Ehjqv+oD988I7FaqLOVjPoOE3S/ni4t32vmvb/vd/58r07H/zP/+Qfz6YTMgACwZWXn7ry1BOn98d3n7v8aejgZDCdHdFUYLA9a2frq6fOlTXbECazycJCt93uBs/TyUQ0GEfT6ciRcKiPdja5LiqgtN1d7K2mWW5cmxn6R0dgoNXKOt18f/ewnk1IJ0EDuZVs5fLe3mQ22PT9TX90z0AlEOdcCo92rrRJAUhIRh8fMnz0q1muwIbd1UTFfAMYms285qPn+xOeJf4o0UieUIsmtc5ac3w46byBb6DM4y8a5BGZGedMMBEpva/Y18FHjkWU/CUiQEyMFVFFyJLEAkYxjthNiSogeAleufS+5uA5MDOoWhP9MaNidTNCSZIEjies8deHRuzOR11ExMAcNdSISETrEBCRSKLnHWIopmylyN1swZYym2ZhltWln1XldOoMGYROlmQGXv71X1vstv7F//6Hk9Eg9ogMLu2eS5PlFoRzq3i+0/d7P06rOyc32icuXl5dWju9fOpwICZJ68CA2O12y2KGoHVVWUPlbGpImet+f2/7zvthOiTCdqfnktbi4oqiAyBnsK5DyTCZTqfjoS9HUk+A0vWrL/ZWz3lfzsa7PNlBPwLxDQQcn19oZlCAANAIhhJSbDhUG/4nzGX8Hguhuftbo9ffJPpjHcNf1IVpo1YGoHosjPLXhOzPfLsq6/zaownPo+nsPMIbn08WQVGjqCLGmhh8iMTaCCNqxLIAoteiMEe+4rF9GUZJIGjm8/EB0bkwiQLqvDKEBhdlQNC4QS8MSiGwIR4Pyjdee21Y8sHmT5Pu6Und4v62y9tJbZcg66boZ4GwffHC8n/73/0321tb0ToDFIyGtlu4ePbqrc2BWz+zvFjfvTe8cKrF/fdv3Z8mdnmx0zn0WnlOE1pdWRkOh1mSTMbDbrszK0eEOptNuJ6OR0fqp4wuy9Isb5e1ICVojXXAoZwWPuutiNTVbBzKgQLki6fPPPmin83CeLca7MB03yIHjWsy81yhzVgiarXP/+3x/8/9/OjX/wNOEs4eiOqWnAAAAABJRU5ErkJggg==","text/plain":["PILImage mode=RGB size=192x128"]},"execution_count":58,"metadata":{},"output_type":"execute_result"}],"source":["img = PILImage.create(f'test_images/unknown_00.jpg')\n","img.thumbnail((192,192))\n","img"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":434},"executionInfo":{"elapsed":729,"status":"ok","timestamp":1672937954530,"user":{"displayName":"MSI","userId":"13207606968035913219"},"user_tz":-360},"id":"yTWEYc-3w82b","outputId":"67c9be34-2192-4728-84d5-1e7b1b07fdb8"},"outputs":[{"data":{"text/html":["\n","<style>\n"," /* Turns off some styling */\n"," progress {\n"," /* gets rid of default border in Firefox and Opera. */\n"," border: none;\n"," /* Needs to be in here for Safari polyfill so background images work as expected. */\n"," background-size: auto;\n"," }\n"," progress:not([value]), progress:not([value])::-webkit-progress-bar {\n"," background: repeating-linear-gradient(45deg, #7e7e7e, #7e7e7e 10px, #5c5c5c 10px, #5c5c5c 20px);\n"," }\n"," .progress-bar-interrupted, .progress-bar-interrupted::-webkit-progress-bar {\n"," background: #F44336;\n"," }\n","</style>\n"],"text/plain":["<IPython.core.display.HTML object>"]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":[],"text/plain":["<IPython.core.display.HTML object>"]},"metadata":{},"output_type":"display_data"},{"name":"stdout","output_type":"stream","text":["cowboy hat TensorBase(6) TensorBase([1.2819e-04, 3.9843e-04, 1.4953e-06, 1.4505e-03, 3.6479e-03,\n"," 1.4338e-04, 9.4328e-01, 4.2777e-02, 1.6832e-04, 1.1378e-03,\n"," 4.8009e-04, 3.8531e-04, 1.8645e-04, 8.2908e-05, 8.0973e-04,\n"," 2.3138e-04, 1.0029e-03, 8.2311e-05, 2.1224e-05, 3.5836e-03])\n"]},{"data":{"text/plain":["{'baseball cap': 0.0001281949516851455,\n"," 'beanie cap': 0.0003984264621976763,\n"," 'fedora cap': 1.4952730680306558e-06,\n"," 'cowboy hat': 0.0014505067374557257,\n"," 'kepi cap': 0.003647877834737301,\n"," 'flat cap': 0.00014338080654852092,\n"," 'trucker cap': 0.9432810544967651,\n"," 'newsboy cap': 0.042776916176080704,\n"," 'pork pie hat': 0.00016831685206852853,\n"," 'bowler hat': 0.0011378307826817036,\n"," 'top hat': 0.0004800933529622853,\n"," 'sun hat': 0.0003853080852422863,\n"," 'boater hat': 0.00018644717056304216,\n"," 'ivy cap': 8.290848199976608e-05,\n"," 'bucket hat': 0.0008097293321043253,\n"," 'balaclava cap': 0.00023138226242735982,\n"," 'turban cap': 0.00100289611145854,\n"," 'taqiyah cap': 8.231084211729467e-05,\n"," 'rasta cap': 2.1223830117378384e-05,\n"," 'visor cap': 0.0035836147144436836}"]},"execution_count":59,"metadata":{},"output_type":"execute_result"}],"source":["recognize_image(img)"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":3358,"status":"ok","timestamp":1672937374280,"user":{"displayName":"MSI","userId":"13207606968035913219"},"user_tz":-360},"id":"sXlpu9i8zE5e","outputId":"9144ccc7-ff2e-42e7-96b1-2624e2c2d254"},"outputs":[{"name":"stderr","output_type":"stream","text":["/usr/local/lib/python3.8/dist-packages/gradio/inputs.py:257: UserWarning: Usage of gradio.inputs is deprecated, and will not be supported in the future, please import your component from gradio.components\n"," warnings.warn(\n","/usr/local/lib/python3.8/dist-packages/gradio/deprecation.py:40: UserWarning: `optional` parameter is deprecated, and it has no effect\n"," warnings.warn(value)\n","/usr/local/lib/python3.8/dist-packages/gradio/outputs.py:197: UserWarning: Usage of gradio.outputs is deprecated, and will not be supported in the future, please import your components from gradio.components\n"," warnings.warn(\n","/usr/local/lib/python3.8/dist-packages/gradio/deprecation.py:40: UserWarning: The 'type' parameter has been deprecated. Use the Number component instead.\n"," warnings.warn(value)\n"]},{"name":"stdout","output_type":"stream","text":["Colab notebook detected. To show errors in colab notebook, set debug=True in launch()\n","Running on public URL: https://aa658403-2945-4237.gradio.live\n","\n","This share link expires in 72 hours. For free permanent hosting and GPU upgrades (NEW!), check out Spaces: https://huggingface.co/spaces\n"]},{"data":{"text/plain":[]},"execution_count":50,"metadata":{},"output_type":"execute_result"}],"source":["#!export\n","image = gr.inputs.Image(shape=(192,192))\n","label = gr.outputs.Label()\n","examples = [\n"," 'test_images/unknown_00.jpg',\n"," 'test_images/unknown_01.jpg',\n"," 'test_images/unknown_02.jpg',\n"," 'test_images/unknown_03.jpg'\n"," ]\n","\n","iface = gr.Interface(fn=recognize_image, inputs=image, outputs=label, examples=examples)\n","iface.launch(inline=False)"]},{"cell_type":"markdown","metadata":{"id":"3gyUlfJW2jRu"},"source":["# Notebook to Python Script Export"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"IybJQe222ikO"},"outputs":[],"source":["from nbdev.export import notebook2script"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"85az32eq3qpJ"},"outputs":[],"source":["notebook2script('app.ipynb')"]}],"metadata":{"colab":{"authorship_tag":"ABX9TyMan/yDM0d3gOgdc6LhakLd","provenance":[]},"kernelspec":{"display_name":"Python 3","language":"python","name":"python3"},"language_info":{"codemirror_mode":{"name":"ipython","version":3},"file_extension":".py","mimetype":"text/x-python","name":"python","nbconvert_exporter":"python","pygments_lexer":"ipython3","version":"3.9.13 (tags/v3.9.13:6de2ca5, May 17 2022, 16:36:42) [MSC v.1929 64 bit (AMD64)]"},"vscode":{"interpreter":{"hash":"f8f14f5a7c49a331ac7a55934b43ce13bd28be1333db14e2d71768ad3378996c"}}},"nbformat":4,"nbformat_minor":0}
app.py CHANGED
@@ -6,39 +6,39 @@ import gradio as gr
6
  # pathlib.PosixPath = pathlib.WindowsPath
7
 
8
  vehicle_labels = (
9
- "Airplane",
10
- "Ambulance",
11
- "Armored Tank",
12
- "ATV",
13
- "Autorickshaw",
14
- "Bicycle",
15
- "Boat",
16
- "Buggy",
17
- "Bulldozer",
18
- "Cargo Ship",
19
- "Cargo Truck",
20
- "Crane",
21
- "Excavator",
22
- "Ferry",
23
- "Helicopter",
24
- "Hot Air Baloon",
25
- "Microbus",
26
- "Monster Truck",
27
- "Motorcycle",
28
- "Multi Purpose Vehicle",
29
- "Ocean Liner",
30
- "Police Car",
31
- "Private Car",
32
- "Rickshaw",
33
- "Sail Boat",
34
- "Semi Truck",
35
- "Sports Car",
36
- "Steam Roller",
37
- "SUV",
38
- "Transport Bus",
39
- "Train",
40
- "Truck",
41
- "Yacht"
42
  )
43
 
44
  model = load_learner('vehicle-recognizer-v1.pkl')
 
6
  # pathlib.PosixPath = pathlib.WindowsPath
7
 
8
  vehicle_labels = (
9
+ 'ATV',
10
+ 'Airplane',
11
+ 'Ambulance',
12
+ 'Armored Tank',
13
+ 'Autorickshaw',
14
+ 'Bicycle',
15
+ 'Boat',
16
+ 'Buggy',
17
+ 'Bulldozer',
18
+ 'Cargo Ship',
19
+ 'Cargo Truck',
20
+ 'Crane',
21
+ 'Excavator',
22
+ 'Ferry',
23
+ 'Helicopter',
24
+ 'Hot Air Baloon',
25
+ 'Microbus',
26
+ 'Monster Truck',
27
+ 'Motorcycle',
28
+ 'Multi Purpose Vehicle',
29
+ 'Ocean Liner',
30
+ 'Police Car',
31
+ 'Private Car',
32
+ 'Rickshaw',
33
+ 'SUV',
34
+ 'Sail Boat',
35
+ 'Semi Truck',
36
+ 'Sports Car',
37
+ 'Steam Roller',
38
+ 'Train',
39
+ 'Transport Bus',
40
+ 'Truck',
41
+ 'Yacht'
42
  )
43
 
44
  model = load_learner('vehicle-recognizer-v1.pkl')
image1.jpg ADDED
image2.jpg ADDED
image3.jpg ADDED
image4.jpg ADDED
requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ fastai==2.7.10
2
+ gradio==3.16.0
vehicle-recognizer-v1.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2287c2ec214b97be568073f535f3cbb1589d378667f326ab850804525d9f1ca9
3
+ size 87715305
vehicle-recognizer-v2.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3234f30c1f206d30f91a6155712144d946f429d3ba0f63fc9c3fd888b62e0e95
3
+ size 87712809