|
import gradio as gr |
|
import requests |
|
import time |
|
import json |
|
import base64 |
|
import os |
|
from io import BytesIO |
|
import html |
|
import re |
|
|
|
|
|
|
|
class Prodia: |
|
def __init__(self, api_key, base=None): |
|
self.base = base or "https://api.prodia.com/v1" |
|
self.headers = { |
|
"X-Prodia-Key": api_key |
|
} |
|
|
|
def generate(self, params): |
|
response = self._post(f"{self.base}/sd/generate", params) |
|
return response.json() |
|
|
|
def transform(self, params): |
|
response = self._post(f"{self.base}/sd/transform", params) |
|
return response.json() |
|
|
|
def controlnet(self, params): |
|
response = self._post(f"{self.base}/sd/controlnet", params) |
|
return response.json() |
|
|
|
def get_job(self, job_id): |
|
response = self._get(f"{self.base}/job/{job_id}") |
|
return response.json() |
|
|
|
def wait(self, job): |
|
job_result = job |
|
|
|
while job_result['status'] not in ['succeeded', 'failed']: |
|
time.sleep(0.25) |
|
job_result = self.get_job(job['job']) |
|
|
|
return job_result |
|
|
|
def list_models(self): |
|
response = self._get(f"{self.base}/sd/models") |
|
return response.json() |
|
|
|
def list_samplers(self): |
|
response = self._get(f"{self.base}/sd/samplers") |
|
return response.json() |
|
|
|
def _post(self, url, params): |
|
headers = { |
|
**self.headers, |
|
"Content-Type": "application/json" |
|
} |
|
response = requests.post(url, headers=headers, data=json.dumps(params)) |
|
|
|
if response.status_code != 200: |
|
raise Exception(f"Bad Prodia Response: {response.status_code}") |
|
|
|
return response |
|
|
|
def _get(self, url): |
|
response = requests.get(url, headers=self.headers) |
|
|
|
if response.status_code != 200: |
|
raise Exception(f"Bad Prodia Response: {response.status_code}") |
|
|
|
return response |
|
|
|
|
|
def image_to_base64(image): |
|
|
|
buffered = BytesIO() |
|
image.save(buffered, format="PNG") |
|
|
|
|
|
img_str = base64.b64encode(buffered.getvalue()) |
|
|
|
return img_str.decode('utf-8') |
|
|
|
|
|
def remove_id_and_ext(text): |
|
text = re.sub(r'\[.*\]$', '', text) |
|
extension = text[-12:].strip() |
|
if extension == "safetensors": |
|
text = text[:-13] |
|
elif extension == "ckpt": |
|
text = text[:-4] |
|
return text |
|
|
|
|
|
def get_data(text): |
|
results = {} |
|
patterns = { |
|
'prompt': r'(.*)', |
|
'negative_prompt': r'Negative prompt: (.*)', |
|
'steps': r'Steps: (\d+),', |
|
'seed': r'Seed: (\d+),', |
|
'sampler': r'Sampler:\s*([^\s,]+(?:\s+[^\s,]+)*)', |
|
'model': r'Model:\s*([^\s,]+)', |
|
'cfg_scale': r'CFG scale:\s*([\d\.]+)', |
|
'size': r'Size:\s*([0-9]+x[0-9]+)' |
|
} |
|
for key in ['prompt', 'negative_prompt', 'steps', 'seed', 'sampler', 'model', 'cfg_scale', 'size']: |
|
match = re.search(patterns[key], text) |
|
if match: |
|
results[key] = match.group(1) |
|
else: |
|
results[key] = None |
|
if results['size'] is not None: |
|
w, h = results['size'].split("x") |
|
results['w'] = w |
|
results['h'] = h |
|
else: |
|
results['w'] = None |
|
results['h'] = None |
|
return results |
|
|
|
|
|
def send_to_txt2img(image): |
|
|
|
result = {tabs: gr.update(selected="t2i")} |
|
|
|
try: |
|
text = image.info['parameters'] |
|
data = get_data(text) |
|
result[prompt] = gr.update(value=data['prompt']) |
|
result[negative_prompt] = gr.update(value=data['negative_prompt']) if data['negative_prompt'] is not None else gr.update() |
|
result[steps] = gr.update(value=int(data['steps'])) if data['steps'] is not None else gr.update() |
|
result[seed] = gr.update(value=int(data['seed'])) if data['seed'] is not None else gr.update() |
|
result[cfg_scale] = gr.update(value=float(data['cfg_scale'])) if data['cfg_scale'] is not None else gr.update() |
|
result[width] = gr.update(value=int(data['w'])) if data['w'] is not None else gr.update() |
|
result[height] = gr.update(value=int(data['h'])) if data['h'] is not None else gr.update() |
|
result[sampler] = gr.update(value=data['sampler']) if data['sampler'] is not None else gr.update() |
|
if model in model_names: |
|
result[model] = gr.update(value=model_names[model]) |
|
else: |
|
result[model] = gr.update() |
|
return result |
|
|
|
except Exception as e: |
|
print(e) |
|
|
|
return result |
|
|
|
|
|
prodia_client = Prodia(api_key=os.getenv("PRODIA_API_KEY")) |
|
model_list = prodia_client.list_models() |
|
model_names = {} |
|
|
|
for model_name in model_list: |
|
name_without_ext = remove_id_and_ext(model_name) |
|
model_names[name_without_ext] = model_name |
|
|
|
|
|
def txt2img(prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed): |
|
result = prodia_client.generate({ |
|
"prompt": prompt, |
|
"negative_prompt": negative_prompt, |
|
"model": model, |
|
"steps": steps, |
|
"sampler": sampler, |
|
"cfg_scale": cfg_scale, |
|
"width": width, |
|
"height": height, |
|
"seed": seed |
|
}) |
|
|
|
job = prodia_client.wait(result) |
|
|
|
return job["imageUrl"] |
|
|
|
|
|
def img2img(input_image, denoising, prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed): |
|
result = prodia_client.transform({ |
|
"imageData": image_to_base64(input_image), |
|
"denoising_strength": denoising, |
|
"prompt": prompt, |
|
"negative_prompt": negative_prompt, |
|
"model": model, |
|
"steps": steps, |
|
"sampler": sampler, |
|
"cfg_scale": cfg_scale, |
|
"width": width, |
|
"height": height, |
|
"seed": seed |
|
}) |
|
|
|
job = prodia_client.wait(result) |
|
|
|
return job["imageUrl"] |
|
|
|
|
|
css = """ |
|
#generate { |
|
height: 100%; |
|
} |
|
""" |
|
|
|
with gr.Blocks(css=css) as demo: |
|
with gr.Row(): |
|
with gr.Column(scale=6): |
|
model = gr.Dropdown(interactive=True,value="absolutereality_v181.safetensors [3d9d4d2b]", show_label=True, label="Stable Diffusion Checkpoint", choices=prodia_client.list_models()) |
|
|
|
with gr.Column(scale=1): |
|
gr.Markdown(elem_id="powered-by-prodia", value="AUTOMATIC1111 Stable Diffusion Web UI.<br>Powered by [Prodia](https://prodia.com).<br>For more features and faster generation times check out our [API Docs](https://docs.prodia.com/reference/getting-started-guide).") |
|
|
|
with gr.Tabs() as tabs: |
|
with gr.Tab("txt2img", id='t2i'): |
|
with gr.Row(): |
|
with gr.Column(scale=6, min_width=600): |
|
prompt = gr.Textbox("space warrior, beautiful, female, ultrarealistic, soft lighting, 8k", placeholder="Prompt", show_label=False, lines=3) |
|
negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=False, lines=3, value="3d, cartoon, anime, (deformed eyes, nose, ears, nose), bad anatomy, ugly") |
|
with gr.Column(): |
|
text_button = gr.Button("Generate", variant='primary', elem_id="generate") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=3): |
|
with gr.Tab("Generation"): |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
sampler = gr.Dropdown(value="DPM++ 2M Karras", show_label=True, label="Sampling Method", choices=prodia_client.list_samplers()) |
|
|
|
with gr.Column(scale=1): |
|
steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=25, value=20, step=1) |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
width = gr.Slider(label="Width", maximum=1024, value=512, step=8) |
|
height = gr.Slider(label="Height", maximum=1024, value=512, step=8) |
|
|
|
with gr.Column(scale=1): |
|
batch_size = gr.Slider(label="Batch Size", maximum=1, value=1) |
|
batch_count = gr.Slider(label="Batch Count", maximum=1, value=1) |
|
|
|
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=7, step=1) |
|
seed = gr.Number(label="Seed", value=-1) |
|
|
|
with gr.Column(scale=2): |
|
image_output = gr.Image(value="https://images.prodia.xyz/8ede1a7c-c0ee-4ded-987d-6ffed35fc477.png") |
|
|
|
text_button.click(txt2img, inputs=[prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, |
|
seed], outputs=image_output, concurrency_limit=64) |
|
|
|
with gr.Tab("img2img", id='i2i'): |
|
with gr.Row(): |
|
with gr.Column(scale=6, min_width=600): |
|
i2i_prompt = gr.Textbox("space warrior, beautiful, female, ultrarealistic, soft lighting, 8k", placeholder="Prompt", show_label=False, lines=3) |
|
i2i_negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=False, lines=3, value="3d, cartoon, anime, (deformed eyes, nose, ears, nose), bad anatomy, ugly") |
|
with gr.Column(): |
|
i2i_text_button = gr.Button("Generate", variant='primary', elem_id="generate") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=3): |
|
with gr.Tab("Generation"): |
|
i2i_image_input = gr.Image(type="pil") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
i2i_sampler = gr.Dropdown(value="Euler a", show_label=True, label="Sampling Method", choices=prodia_client.list_samplers()) |
|
|
|
with gr.Column(scale=1): |
|
i2i_steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=25, value=20, step=1) |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
i2i_width = gr.Slider(label="Width", maximum=1024, value=512, step=8) |
|
i2i_height = gr.Slider(label="Height", maximum=1024, value=512, step=8) |
|
|
|
with gr.Column(scale=1): |
|
i2i_batch_size = gr.Slider(label="Batch Size", maximum=1, value=1) |
|
i2i_batch_count = gr.Slider(label="Batch Count", maximum=1, value=1) |
|
|
|
i2i_cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=7, step=1) |
|
i2i_denoising = gr.Slider(label="Denoising Strength", minimum=0, maximum=1, value=0.7, step=0.1) |
|
i2i_seed = gr.Number(label="Seed", value=-1) |
|
|
|
with gr.Column(scale=2): |
|
i2i_image_output = gr.Image(value="https://images.prodia.xyz/8ede1a7c-c0ee-4ded-987d-6ffed35fc477.png") |
|
|
|
i2i_text_button.click(img2img, inputs=[i2i_image_input, i2i_denoising, i2i_prompt, i2i_negative_prompt, |
|
model, i2i_steps, i2i_sampler, i2i_cfg_scale, i2i_width, i2i_height, |
|
i2i_seed], outputs=i2i_image_output, concurrency_limit=64) |
|
|
|
with gr.Tab("PNG Info"): |
|
def plaintext_to_html(text, classname=None): |
|
content = "<br>\n".join(html.escape(x) for x in text.split('\n')) |
|
|
|
return f"<p class='{classname}'>{content}</p>" if classname else f"<p>{content}</p>" |
|
|
|
|
|
def get_exif_data(image): |
|
items = image.info |
|
|
|
info = '' |
|
for key, text in items.items(): |
|
info += f""" |
|
<div> |
|
<p><b>{plaintext_to_html(str(key))}</b></p> |
|
<p>{plaintext_to_html(str(text))}</p> |
|
</div> |
|
""".strip()+"\n" |
|
|
|
if len(info) == 0: |
|
message = "Nothing found in the image." |
|
info = f"<div><p>{message}<p></div>" |
|
|
|
return info |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
image_input = gr.Image(type="pil") |
|
|
|
with gr.Column(): |
|
exif_output = gr.HTML(label="EXIF Data") |
|
send_to_txt2img_btn = gr.Button("Send to txt2img") |
|
|
|
image_input.upload(get_exif_data, inputs=[image_input], outputs=exif_output) |
|
send_to_txt2img_btn.click(send_to_txt2img, inputs=[image_input], outputs=[tabs, prompt, negative_prompt, |
|
steps, seed, model, sampler, |
|
width, height, cfg_scale], |
|
concurrency_limit=64) |
|
|
|
demo.queue(max_size=80, api_open=False).launch(max_threads=256, show_api=False) |
|
|