Upload 6 files
Browse files- assets/ser.ipynb +284 -0
- assets/ser_model.pickle +3 -0
- index.html +92 -18
- server.py +65 -0
- style.css +70 -18
- util.py +43 -0
assets/ser.ipynb
ADDED
@@ -0,0 +1,284 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 52,
|
6 |
+
"id": "c8f31382-77ac-47f8-bd3a-1c805b2d3e75",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"import librosa\n",
|
11 |
+
"import soundfile\n",
|
12 |
+
"import os, glob, pickle\n",
|
13 |
+
"import numpy as np\n",
|
14 |
+
"from sklearn.model_selection import train_test_split\n",
|
15 |
+
"from sklearn.neural_network import MLPClassifier\n",
|
16 |
+
"from sklearn.metrics import accuracy_score"
|
17 |
+
]
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"cell_type": "code",
|
21 |
+
"execution_count": 57,
|
22 |
+
"id": "b0510279-2195-4784-a52b-20b6c18e216c",
|
23 |
+
"metadata": {},
|
24 |
+
"outputs": [],
|
25 |
+
"source": [
|
26 |
+
"# Extract features (mfcc, chroma, mel) from a sound file\n",
|
27 |
+
"def extract_feature(file_name, mfcc, chroma, mel):\n",
|
28 |
+
" with soundfile.SoundFile(file_name) as sound_file:\n",
|
29 |
+
" X = sound_file.read(dtype=\"float32\")\n",
|
30 |
+
" sample_rate=sound_file.samplerate\n",
|
31 |
+
" if chroma:\n",
|
32 |
+
" stft=np.abs(librosa.stft(X))\n",
|
33 |
+
" result=np.array([])\n",
|
34 |
+
" if mfcc:\n",
|
35 |
+
" mfccs=np.mean(librosa.feature.mfcc(y=X, sr=sample_rate, n_mfcc=40).T, axis=0)\n",
|
36 |
+
" result=np.hstack((result, mfccs))\n",
|
37 |
+
" if chroma:\n",
|
38 |
+
" chroma=np.mean(librosa.feature.chroma_stft(S=stft, sr=sample_rate).T,axis=0)\n",
|
39 |
+
" result=np.hstack((result, chroma))\n",
|
40 |
+
" if mel:\n",
|
41 |
+
" mel=np.mean(librosa.feature.melspectrogram(y=X, sr=sample_rate).T,axis=0)\n",
|
42 |
+
" result=np.hstack((result, mel))\n",
|
43 |
+
" return result"
|
44 |
+
]
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"cell_type": "code",
|
48 |
+
"execution_count": 58,
|
49 |
+
"id": "d84a7785-e5b3-44ee-b484-a45fe61aa2af",
|
50 |
+
"metadata": {},
|
51 |
+
"outputs": [],
|
52 |
+
"source": [
|
53 |
+
"#Emotions in the RAVDESS dataset\n",
|
54 |
+
"emotions={\n",
|
55 |
+
" '01':'neutral',\n",
|
56 |
+
" '02':'calm',\n",
|
57 |
+
" '03':'happy',\n",
|
58 |
+
" '04':'sad',\n",
|
59 |
+
" '05':'angry',\n",
|
60 |
+
" '06':'fearful',\n",
|
61 |
+
" '07':'disgust',\n",
|
62 |
+
" '08':'surprised'\n",
|
63 |
+
"}\n",
|
64 |
+
"\n",
|
65 |
+
"# Emotions to observe\n",
|
66 |
+
"observed_emotions=['calm', 'happy', 'fearful', 'disgust']"
|
67 |
+
]
|
68 |
+
},
|
69 |
+
{
|
70 |
+
"cell_type": "code",
|
71 |
+
"execution_count": 59,
|
72 |
+
"id": "5ebdbf11-1c7d-4bbf-9ff7-41b04cfbc902",
|
73 |
+
"metadata": {},
|
74 |
+
"outputs": [],
|
75 |
+
"source": [
|
76 |
+
"#Load the data and extract features for each sound file\n",
|
77 |
+
"def load_data(test_size=0.2):\n",
|
78 |
+
" x,y=[],[]\n",
|
79 |
+
" for file in glob.glob(\"C:\\\\Users\\\\Abhay\\\\Downloads\\\\dataset\\\\Actor_*\\\\*.wav\"):\n",
|
80 |
+
" file_name = os.path.basename(file)\n",
|
81 |
+
" emotion=emotions[file_name.split(\"-\")[2]]\n",
|
82 |
+
" if emotion not in observed_emotions:\n",
|
83 |
+
" continue\n",
|
84 |
+
" feature = extract_feature(file, mfcc=True, chroma=True, mel=True)\n",
|
85 |
+
" x.append(feature)\n",
|
86 |
+
" y.append(emotion)\n",
|
87 |
+
" return train_test_split(np.array(x), y, test_size=test_size, random_state=9)"
|
88 |
+
]
|
89 |
+
},
|
90 |
+
{
|
91 |
+
"cell_type": "code",
|
92 |
+
"execution_count": 61,
|
93 |
+
"id": "17e9421d-b474-4fc8-8321-435a2093c0cb",
|
94 |
+
"metadata": {},
|
95 |
+
"outputs": [],
|
96 |
+
"source": [
|
97 |
+
"#Split the dataset\n",
|
98 |
+
"x_train,x_test,y_train,y_test = load_data(test_size=0.25)"
|
99 |
+
]
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"cell_type": "code",
|
103 |
+
"execution_count": 62,
|
104 |
+
"id": "eb1d0e4a-1766-4d3d-85ea-f69d88b6a007",
|
105 |
+
"metadata": {},
|
106 |
+
"outputs": [
|
107 |
+
{
|
108 |
+
"name": "stdout",
|
109 |
+
"output_type": "stream",
|
110 |
+
"text": [
|
111 |
+
"(576, 192)\n"
|
112 |
+
]
|
113 |
+
}
|
114 |
+
],
|
115 |
+
"source": [
|
116 |
+
"#Get the shape of the training and testing datasets\n",
|
117 |
+
"print((x_train.shape[0], x_test.shape[0]))"
|
118 |
+
]
|
119 |
+
},
|
120 |
+
{
|
121 |
+
"cell_type": "code",
|
122 |
+
"execution_count": 63,
|
123 |
+
"id": "5a765afc-663d-48c0-9dbd-d58caf9069cc",
|
124 |
+
"metadata": {},
|
125 |
+
"outputs": [
|
126 |
+
{
|
127 |
+
"name": "stdout",
|
128 |
+
"output_type": "stream",
|
129 |
+
"text": [
|
130 |
+
"Features extracted: 180\n"
|
131 |
+
]
|
132 |
+
}
|
133 |
+
],
|
134 |
+
"source": [
|
135 |
+
"# Get the number of features extracted\n",
|
136 |
+
"print(f'Features extracted: {x_train.shape[1]}')"
|
137 |
+
]
|
138 |
+
},
|
139 |
+
{
|
140 |
+
"cell_type": "code",
|
141 |
+
"execution_count": 64,
|
142 |
+
"id": "29c258f3-dbb6-4214-aea4-590487f5c68a",
|
143 |
+
"metadata": {},
|
144 |
+
"outputs": [],
|
145 |
+
"source": [
|
146 |
+
"#Initialize the Multi Layer Perceptron Classifier\n",
|
147 |
+
"model=MLPClassifier(alpha=0.01, batch_size=256, epsilon=1e-08, hidden_layer_sizes=(300,), learning_rate='adaptive', max_iter=500)"
|
148 |
+
]
|
149 |
+
},
|
150 |
+
{
|
151 |
+
"cell_type": "code",
|
152 |
+
"execution_count": 65,
|
153 |
+
"id": "76939a33-c7fb-4ee3-b25f-af609dd3a5ce",
|
154 |
+
"metadata": {},
|
155 |
+
"outputs": [
|
156 |
+
{
|
157 |
+
"data": {
|
158 |
+
"text/html": [
|
159 |
+
"<style>#sk-container-id-1 {color: black;background-color: white;}#sk-container-id-1 pre{padding: 0;}#sk-container-id-1 div.sk-toggleable {background-color: white;}#sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-1 label.sk-toggleable__label-arrow:before {content: \"▸\";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-1 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: \"▾\";}#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-1 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-1 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-1 div.sk-parallel-item::after {content: \"\";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-serial::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-1 div.sk-item {position: relative;z-index: 1;}#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-1 div.sk-item::before, #sk-container-id-1 div.sk-parallel-item::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-1 div.sk-label-container {text-align: center;}#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-1 div.sk-text-repr-fallback {display: none;}</style><div id=\"sk-container-id-1\" class=\"sk-top-container\"><div class=\"sk-text-repr-fallback\"><pre>MLPClassifier(alpha=0.01, batch_size=256, hidden_layer_sizes=(300,),\n",
|
160 |
+
" learning_rate='adaptive', max_iter=500)</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-1\" type=\"checkbox\" checked><label for=\"sk-estimator-id-1\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">MLPClassifier</label><div class=\"sk-toggleable__content\"><pre>MLPClassifier(alpha=0.01, batch_size=256, hidden_layer_sizes=(300,),\n",
|
161 |
+
" learning_rate='adaptive', max_iter=500)</pre></div></div></div></div></div>"
|
162 |
+
],
|
163 |
+
"text/plain": [
|
164 |
+
"MLPClassifier(alpha=0.01, batch_size=256, hidden_layer_sizes=(300,),\n",
|
165 |
+
" learning_rate='adaptive', max_iter=500)"
|
166 |
+
]
|
167 |
+
},
|
168 |
+
"execution_count": 65,
|
169 |
+
"metadata": {},
|
170 |
+
"output_type": "execute_result"
|
171 |
+
}
|
172 |
+
],
|
173 |
+
"source": [
|
174 |
+
"#Train the model\n",
|
175 |
+
"model.fit(x_train,y_train)"
|
176 |
+
]
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"cell_type": "code",
|
180 |
+
"execution_count": 66,
|
181 |
+
"id": "41976825-55d6-46eb-a389-eba2cacc540d",
|
182 |
+
"metadata": {},
|
183 |
+
"outputs": [],
|
184 |
+
"source": [
|
185 |
+
"# Predict for the test set\n",
|
186 |
+
"y_pred=model.predict(x_test)"
|
187 |
+
]
|
188 |
+
},
|
189 |
+
{
|
190 |
+
"cell_type": "code",
|
191 |
+
"execution_count": 67,
|
192 |
+
"id": "2401ce73-6268-4751-9d68-3aa15f870f99",
|
193 |
+
"metadata": {},
|
194 |
+
"outputs": [
|
195 |
+
{
|
196 |
+
"name": "stdout",
|
197 |
+
"output_type": "stream",
|
198 |
+
"text": [
|
199 |
+
"Accuracy: 66.67%\n"
|
200 |
+
]
|
201 |
+
}
|
202 |
+
],
|
203 |
+
"source": [
|
204 |
+
"# Calculate the accuracy of our model\n",
|
205 |
+
"accuracy=accuracy_score(y_true=y_test, y_pred=y_pred)\n",
|
206 |
+
"\n",
|
207 |
+
"# Print the accuracy\n",
|
208 |
+
"print(\"Accuracy: {:.2f}%\".format(accuracy*100))"
|
209 |
+
]
|
210 |
+
},
|
211 |
+
{
|
212 |
+
"cell_type": "code",
|
213 |
+
"execution_count": 68,
|
214 |
+
"id": "568ff907-2558-4f2b-bf4a-f10b889233cc",
|
215 |
+
"metadata": {},
|
216 |
+
"outputs": [],
|
217 |
+
"source": [
|
218 |
+
"with open('ser_model.pickle','wb') as f:\n",
|
219 |
+
" pickle.dump(model,f)"
|
220 |
+
]
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"cell_type": "code",
|
224 |
+
"execution_count": 69,
|
225 |
+
"id": "19d865fc-504e-40dd-9822-a49ae0f3e568",
|
226 |
+
"metadata": {},
|
227 |
+
"outputs": [],
|
228 |
+
"source": [
|
229 |
+
"with open('ser_model.pickle','rb') as f:\n",
|
230 |
+
" mod = pickle.load(f)"
|
231 |
+
]
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"cell_type": "code",
|
235 |
+
"execution_count": 71,
|
236 |
+
"id": "7cecff7e-060b-461d-a597-2b11ee731d97",
|
237 |
+
"metadata": {},
|
238 |
+
"outputs": [
|
239 |
+
{
|
240 |
+
"data": {
|
241 |
+
"text/plain": [
|
242 |
+
"0.6666666666666666"
|
243 |
+
]
|
244 |
+
},
|
245 |
+
"execution_count": 71,
|
246 |
+
"metadata": {},
|
247 |
+
"output_type": "execute_result"
|
248 |
+
}
|
249 |
+
],
|
250 |
+
"source": [
|
251 |
+
"mod.score(x_test,y_test)"
|
252 |
+
]
|
253 |
+
},
|
254 |
+
{
|
255 |
+
"cell_type": "code",
|
256 |
+
"execution_count": null,
|
257 |
+
"id": "bd184951-3715-4256-86ae-20d00a17a57b",
|
258 |
+
"metadata": {},
|
259 |
+
"outputs": [],
|
260 |
+
"source": []
|
261 |
+
}
|
262 |
+
],
|
263 |
+
"metadata": {
|
264 |
+
"kernelspec": {
|
265 |
+
"display_name": "Python 3 (ipykernel)",
|
266 |
+
"language": "python",
|
267 |
+
"name": "python3"
|
268 |
+
},
|
269 |
+
"language_info": {
|
270 |
+
"codemirror_mode": {
|
271 |
+
"name": "ipython",
|
272 |
+
"version": 3
|
273 |
+
},
|
274 |
+
"file_extension": ".py",
|
275 |
+
"mimetype": "text/x-python",
|
276 |
+
"name": "python",
|
277 |
+
"nbconvert_exporter": "python",
|
278 |
+
"pygments_lexer": "ipython3",
|
279 |
+
"version": "3.8.16"
|
280 |
+
}
|
281 |
+
},
|
282 |
+
"nbformat": 4,
|
283 |
+
"nbformat_minor": 5
|
284 |
+
}
|
assets/ser_model.pickle
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:682d2b3749ad1132a8e11d21cd7c77479dedbcae9367478cf8f634c6bdbe37c8
|
3 |
+
size 1338552
|
index.html
CHANGED
@@ -1,19 +1,93 @@
|
|
1 |
<!DOCTYPE html>
|
2 |
-
<html>
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
</
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
<!DOCTYPE html>
|
2 |
+
<html lang="en">
|
3 |
+
|
4 |
+
<head>
|
5 |
+
<meta charset="UTF-8">
|
6 |
+
<meta http-equiv="X-UA-Compatible" content="IE=edge">
|
7 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
8 |
+
<link rel="stylesheet" href="style.css">
|
9 |
+
<title>Practicum-SER</title>
|
10 |
+
</head>
|
11 |
+
|
12 |
+
<body>
|
13 |
+
<div class="cont">
|
14 |
+
<div class="body">
|
15 |
+
<h1> Speech Emotion Detection </h1>
|
16 |
+
<h2> Select a File from list to Predict Emotion</h2>
|
17 |
+
<form id="get_emotion" method="post">
|
18 |
+
<select name="file_name" id="file-sel" required>
|
19 |
+
<option value=""> -- Select file for Emotion Detection -- </option>
|
20 |
+
</select>
|
21 |
+
<div class="audio" id="audio"></div>
|
22 |
+
<button type="submit">Predict Emotion</button>
|
23 |
+
<textarea name="emotion" id="emotion" cols="5" rows="1" disabled placeholder="Predicted Emotion"></textarea>
|
24 |
+
</form>
|
25 |
+
</div>
|
26 |
+
</div>
|
27 |
+
|
28 |
+
|
29 |
+
<script src="https://code.jquery.com/jquery-3.6.4.min.js"
|
30 |
+
integrity="sha256-oP6HI9z1XaZNBrJURtCoUT5SUnxFr8s3BzRl+cbzUq8=" crossorigin="anonymous"></script>
|
31 |
+
</script>
|
32 |
+
<script>
|
33 |
+
|
34 |
+
function setFileNames(arr) {
|
35 |
+
file = document.getElementById("file-sel");
|
36 |
+
arr.forEach(element => {
|
37 |
+
opt_list = `<option value=${element}> ${element}</option>`
|
38 |
+
file.insertAdjacentHTML('beforeend', opt_list)
|
39 |
+
});
|
40 |
+
}
|
41 |
+
|
42 |
+
fetch("http://127.0.0.1:8000/files")
|
43 |
+
.then((response) => response.json())
|
44 |
+
.then(setFileNames);
|
45 |
+
|
46 |
+
document.forms['get_emotion'].addEventListener('submit', (event) => {
|
47 |
+
event.preventDefault();
|
48 |
+
fetch('http://127.0.0.1:8000/get_emotion', {
|
49 |
+
method: 'POST',
|
50 |
+
body: new URLSearchParams(new FormData(event.target))
|
51 |
+
}).then((response) => {
|
52 |
+
if (!response.ok) {
|
53 |
+
throw new Error(`HTTP error! Status: ${response.status}`);
|
54 |
+
}
|
55 |
+
return response.text();
|
56 |
+
}).then((body) => {
|
57 |
+
document.getElementById("emotion").innerText = ` ${body.toString()}`;
|
58 |
+
|
59 |
+
}).catch((error) => {
|
60 |
+
// TODO handle error
|
61 |
+
console.log(error);
|
62 |
+
});
|
63 |
+
});
|
64 |
+
|
65 |
+
async function postData(url , data) {
|
66 |
+
const response = await fetch(url, {
|
67 |
+
method: 'POST',
|
68 |
+
headers: {
|
69 |
+
'Content-Type': 'application/json'
|
70 |
+
},
|
71 |
+
body: JSON.stringify(data)
|
72 |
+
});
|
73 |
+
return response.blob();
|
74 |
+
}
|
75 |
+
|
76 |
+
function load_sound_file(child){
|
77 |
+
postData('http://127.0.0.1:8000/get_file', { "file_name": this.value })
|
78 |
+
.then(blob => {
|
79 |
+
const audioURL = URL.createObjectURL(blob);
|
80 |
+
const audioElement = document.createElement('audio');
|
81 |
+
audioElement.src = audioURL;
|
82 |
+
audioElement.controls = true;
|
83 |
+
ad= document.getElementById("audio");
|
84 |
+
ad.innerHTML = "";
|
85 |
+
ad.appendChild(audioElement);
|
86 |
+
});
|
87 |
+
}
|
88 |
+
|
89 |
+
document.getElementById("file-sel").addEventListener('change', load_sound_file);
|
90 |
+
</script>
|
91 |
+
</body>
|
92 |
+
|
93 |
+
</html>
|
server.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
import util
|
3 |
+
import glob
|
4 |
+
import json
|
5 |
+
import os.path
|
6 |
+
import pickle
|
7 |
+
|
8 |
+
from flask import Flask, request, jsonify, send_file, send_from_directory
|
9 |
+
app = Flask(__name__)
|
10 |
+
|
11 |
+
white = ['http://127.0.0.1:5500']
|
12 |
+
@app.after_request
|
13 |
+
def add_cors_headers(response):
|
14 |
+
if(request.referrer):
|
15 |
+
r = request.referrer[:-1]
|
16 |
+
if r in white:
|
17 |
+
response.headers.add('Access-Control-Allow-Origin', r)
|
18 |
+
response.headers.add('Access-Control-Allow-Credentials', 'true')
|
19 |
+
response.headers.add('Access-Control-Allow-Headers', 'Content-Type')
|
20 |
+
response.headers.add('Access-Control-Allow-Headers', 'Cache-Control')
|
21 |
+
response.headers.add('Access-Control-Allow-Headers', 'X-Requested-With')
|
22 |
+
response.headers.add('Access-Control-Allow-Headers', 'Authorization')
|
23 |
+
response.headers.add('Access-Control-Allow-Methods', 'GET, POST, OPTIONS, PUT, DELETE')
|
24 |
+
return response
|
25 |
+
|
26 |
+
|
27 |
+
@app.route('/h')
|
28 |
+
def hello():
|
29 |
+
return "hi"
|
30 |
+
|
31 |
+
|
32 |
+
@app.route('/files')
|
33 |
+
def get_file_names():
|
34 |
+
folder_path = util.__folder_path__ + "Actor_*\\*.wav"
|
35 |
+
file_names = []
|
36 |
+
for file in glob.glob(folder_path):
|
37 |
+
file_name = os.path.basename(file)
|
38 |
+
file_path = os.path.dirname(file).split('\\')[-1]
|
39 |
+
rel_file_name = file_path+"/"+file_name
|
40 |
+
file_names.append(rel_file_name)
|
41 |
+
return file_names
|
42 |
+
|
43 |
+
|
44 |
+
@app.route('/get_file', methods=['POST'])
|
45 |
+
def get_file():
|
46 |
+
file_name = request.json['file_name']
|
47 |
+
file_path = util.__folder_path__+file_name
|
48 |
+
return send_file(file_path)
|
49 |
+
|
50 |
+
|
51 |
+
@app.route('/get_emotion', methods=['POST'])
|
52 |
+
def get_emotion():
|
53 |
+
file_name = request.form['file_name']
|
54 |
+
file_path = util.__folder_path__+file_name
|
55 |
+
util.load_model()
|
56 |
+
emotion = util.predict_emotion(file_path)
|
57 |
+
return emotion
|
58 |
+
|
59 |
+
|
60 |
+
if __name__ == "__main__":
|
61 |
+
print("starting")
|
62 |
+
# app.debug = True
|
63 |
+
app.run(port=8000,debug=True)
|
64 |
+
|
65 |
+
|
style.css
CHANGED
@@ -1,28 +1,80 @@
|
|
1 |
body {
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
4 |
}
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
}
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
}
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
margin: 0 auto;
|
21 |
-
padding: 16px;
|
22 |
-
border: 1px solid lightgray;
|
23 |
-
border-radius: 16px;
|
24 |
}
|
25 |
|
26 |
-
.
|
27 |
-
|
|
|
|
|
|
|
|
|
28 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
body {
|
2 |
+
font-family: Arial, sans-serif;
|
3 |
+
margin: 0;
|
4 |
+
padding: 0;
|
5 |
+
text-align: center;
|
6 |
+
height: 100%;
|
7 |
}
|
8 |
|
9 |
+
form {
|
10 |
+
display: flex;
|
11 |
+
flex-direction: column;
|
12 |
+
align-items: left;
|
13 |
+
margin-top: 50px;
|
14 |
+
}
|
15 |
+
|
16 |
+
h2 {
|
17 |
+
text-align: left;
|
18 |
+
}
|
19 |
+
|
20 |
+
select,
|
21 |
+
textarea,
|
22 |
+
button {
|
23 |
+
font-size: 18px;
|
24 |
+
padding: 10px;
|
25 |
+
margin-bottom: 20px;
|
26 |
+
}
|
27 |
+
|
28 |
+
select,
|
29 |
+
button {
|
30 |
+
width: 400px;
|
31 |
+
}
|
32 |
+
|
33 |
+
textarea {
|
34 |
+
width: 40%;
|
35 |
+
resize: none;
|
36 |
}
|
37 |
|
38 |
+
button {
|
39 |
+
background-color: rgba(26, 25, 25, 0.811);
|
40 |
+
color: white;
|
41 |
+
border: none;
|
42 |
+
cursor: pointer;
|
43 |
}
|
44 |
|
45 |
+
button:hover {
|
46 |
+
background-color: black;
|
|
|
|
|
|
|
|
|
47 |
}
|
48 |
|
49 |
+
.audio {
|
50 |
+
/* display: flex;
|
51 |
+
justify-content: center; */
|
52 |
+
text-align: left;
|
53 |
+
margin-left: 0%;
|
54 |
+
padding-left: 0%;
|
55 |
}
|
56 |
+
|
57 |
+
h1 {
|
58 |
+
font-size: 3rem;
|
59 |
+
text-align: center;
|
60 |
+
margin-top: 0;
|
61 |
+
}
|
62 |
+
|
63 |
+
option {
|
64 |
+
margin: 5px 0;
|
65 |
+
padding: 5px 10px !important;
|
66 |
+
}
|
67 |
+
|
68 |
+
.body {
|
69 |
+
margin: auto;
|
70 |
+
align-self: center !important;
|
71 |
+
margin: auto;
|
72 |
+
width: fit-content;
|
73 |
+
}
|
74 |
+
|
75 |
+
.cont {
|
76 |
+
|
77 |
+
display: flex;
|
78 |
+
justify-content: center;
|
79 |
+
height: 100vh;
|
80 |
+
}
|
util.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pickle
|
2 |
+
import numpy as np
|
3 |
+
import librosa
|
4 |
+
import soundfile
|
5 |
+
|
6 |
+
__model__ = None
|
7 |
+
__folder_path__ = "C:\\Users\\Abhay\\Downloads\\dataset\\"
|
8 |
+
|
9 |
+
|
10 |
+
def load_model():
|
11 |
+
with open("assets/ser_model.pickle", 'rb') as f:
|
12 |
+
model = pickle.load(f)
|
13 |
+
global __model__
|
14 |
+
__model__ = model
|
15 |
+
|
16 |
+
|
17 |
+
# Extract features (mfcc, chroma, mel) from a sound file
|
18 |
+
def extract_feature(file_name, mfcc, chroma, mel):
|
19 |
+
with soundfile.SoundFile(file_name) as sound_file:
|
20 |
+
X = sound_file.read(dtype="float32")
|
21 |
+
sample_rate = sound_file.samplerate
|
22 |
+
if chroma:
|
23 |
+
stft = np.abs(librosa.stft(X))
|
24 |
+
result = np.array([])
|
25 |
+
if mfcc:
|
26 |
+
mfccs = np.mean(librosa.feature.mfcc(y=X, sr=sample_rate, n_mfcc=40).T, axis=0)
|
27 |
+
result = np.hstack((result, mfccs))
|
28 |
+
if chroma:
|
29 |
+
chroma = np.mean(librosa.feature.chroma_stft(S=stft, sr=sample_rate).T, axis=0)
|
30 |
+
result = np.hstack((result, chroma))
|
31 |
+
if mel:
|
32 |
+
mel = np.mean(librosa.feature.melspectrogram(y=X, sr=sample_rate).T, axis=0)
|
33 |
+
result = np.hstack((result, mel))
|
34 |
+
return result
|
35 |
+
|
36 |
+
def predict_emotion(file):
|
37 |
+
feature = extract_feature(file, mfcc=True, chroma=True, mel=True)
|
38 |
+
emo = __model__.predict([feature])
|
39 |
+
return emo[0]
|
40 |
+
|
41 |
+
|
42 |
+
load_model()
|
43 |
+
print(predict_emotion("C:\\Users\\Abhay\\Downloads\\dataset\\Actor_18\\03-01-03-01-02-02-18.wav"))
|