Spaces:
Runtime error
Runtime error
| import streamlit as st | |
| from datasets import load_dataset | |
| from sentence_transformers import SentenceTransformer, CrossEncoder, util | |
| import torch | |
| from huggingface_hub import hf_hub_download | |
| embedding_path = "abokbot/wikipedia-embedding" | |
| st.header("Wikipedia Search Engine app") | |
| st_model_load = st.text('Loading embeddings, encoders and dataset (takes about 5min)') | |
| def load_embedding(): | |
| print("Loading embedding...") | |
| path = hf_hub_download(repo_id="abokbot/wikipedia-embedding", filename="wikipedia_en_embedding.pt") | |
| wikipedia_embedding = torch.load(path, map_location=torch.device('cpu')) | |
| print("Embedding loaded!") | |
| return wikipedia_embedding | |
| wikipedia_embedding = load_embedding() | |
| def load_encoders(): | |
| print("Loading encoders...") | |
| bi_encoder = SentenceTransformer('msmarco-MiniLM-L-6-v3') | |
| bi_encoder.max_seq_length = 256 #Truncate long passages to 256 tokens | |
| top_k = 32 | |
| cross_encoder = CrossEncoder('cross-encoder/ms-marco-TinyBERT-L-2-v2') | |
| print("Encoders loaded!") | |
| return bi_encoder, cross_encoder | |
| bi_encoder, cross_encoder = load_encoders() | |
| def load_wikipedia_dataset(): | |
| print("Loading wikipedia dataset...") | |
| dataset = load_dataset("abokbot/wikipedia-first-paragraph")["train"] | |
| print("Dataset loaded!") | |
| return dataset | |
| dataset = load_wikipedia_dataset() | |
| st.success('Search engine ready') | |
| st_model_load.text("") | |
| if 'text' not in st.session_state: | |
| st.session_state.text = "" | |
| st.markdown("Enter query") | |
| st_text_area = st.text_area( | |
| 'E.g. What is the hashing trick? or Largest city in Morocco', | |
| value=st.session_state.text, | |
| height=25 | |
| ) | |
| def search(): | |
| st.session_state.text = st_text_area | |
| query = st_text_area | |
| print("Input question:", query) | |
| ##### Sematic Search ##### | |
| print("Semantic Search") | |
| # Encode the query using the bi-encoder and find potentially relevant passages | |
| top_k = 32 | |
| question_embedding = bi_encoder.encode(query, convert_to_tensor=True) | |
| hits = util.semantic_search(question_embedding, wikipedia_embedding, top_k=top_k) | |
| hits = hits[0] # Get the hits for the first query | |
| ##### Re-Ranking ##### | |
| # Now, score all retrieved passages with the cross_encoder | |
| print("Re-Ranking") | |
| cross_inp = [[query, dataset[hit['corpus_id']]["text"]] for hit in hits] | |
| cross_scores = cross_encoder.predict(cross_inp) | |
| # Sort results by the cross-encoder scores | |
| for idx in range(len(cross_scores)): | |
| hits[idx]['cross-score'] = cross_scores[idx] | |
| hits = sorted(hits, key=lambda x: x['cross-score'], reverse=True) | |
| # Output of top-3 hits from re-ranker | |
| print("\n-------------------------\n") | |
| print("Top-3 Cross-Encoder Re-ranker hits") | |
| results = [] | |
| for hit in hits[:3]: | |
| results.append( | |
| { | |
| "score": round(hit['cross-score'], 3), | |
| "title": dataset[hit['corpus_id']]["title"], | |
| "abstract": dataset[hit['corpus_id']]["text"].replace("\n", " "), | |
| "link": dataset[hit['corpus_id']]["url"] | |
| } | |
| ) | |
| return results | |
| # search button | |
| st_search_button = st.button('Search') | |
| if st_search_button: | |
| results = search() | |
| st.subheader("Top-3 Search results") | |
| for i, result in enumerate(results): | |
| st.markdown(f"#### Result {i+1}") | |
| st.markdown("**Wikipedia article:** " + result["title"]) | |
| st.markdown("**Link:** " + result["link"]) | |
| st.markdown("**First paragraph:** " + result["abstract"]) | |
| st.text("") |