Spaces:
Running
Running
import glob | |
import json | |
import os | |
import sqlite3 | |
from datetime import datetime | |
from huggingface_hub import CommitScheduler | |
try: | |
from trackio.context_vars import current_scheduler | |
from trackio.dummy_commit_scheduler import DummyCommitScheduler | |
from trackio.utils import TRACKIO_DIR | |
except: # noqa: E722 | |
from context_vars import current_scheduler | |
from dummy_commit_scheduler import DummyCommitScheduler | |
from utils import TRACKIO_DIR | |
class SQLiteStorage: | |
def get_project_db_path(project: str) -> str: | |
"""Get the database path for a specific project.""" | |
safe_project_name = "".join( | |
c for c in project if c.isalnum() or c in ("-", "_") | |
).rstrip() | |
if not safe_project_name: | |
safe_project_name = "default" | |
return os.path.join(TRACKIO_DIR, f"{safe_project_name}.db") | |
def init_db(project: str) -> str: | |
""" | |
Initialize the SQLite database with required tables. | |
Returns the database path. | |
""" | |
db_path = SQLiteStorage.get_project_db_path(project) | |
with SQLiteStorage.get_scheduler().lock: | |
with sqlite3.connect(db_path) as conn: | |
cursor = conn.cursor() | |
cursor.execute(""" | |
CREATE TABLE IF NOT EXISTS metrics ( | |
id INTEGER PRIMARY KEY AUTOINCREMENT, | |
timestamp TEXT NOT NULL, | |
project_name TEXT NOT NULL, | |
run_name TEXT NOT NULL, | |
step INTEGER NOT NULL, | |
metrics TEXT NOT NULL | |
) | |
""") | |
conn.commit() | |
return db_path | |
def get_scheduler(): | |
""" | |
Get the scheduler for the database based on the environment variables. | |
This applies to both local and Spaces. | |
""" | |
if current_scheduler.get() is not None: | |
return current_scheduler.get() | |
hf_token = os.environ.get("HF_TOKEN") | |
dataset_id = os.environ.get("TRACKIO_DATASET_ID") | |
if dataset_id is None: | |
scheduler = DummyCommitScheduler() | |
else: | |
scheduler = CommitScheduler( | |
repo_id=dataset_id, | |
repo_type="dataset", | |
folder_path=TRACKIO_DIR, | |
private=True, | |
squash_history=True, | |
token=hf_token, | |
) | |
current_scheduler.set(scheduler) | |
return scheduler | |
def log(project: str, run: str, metrics: dict): | |
""" | |
Safely log metrics to the database. Before logging, this method will ensure the database exists | |
and is set up with the correct tables. It also uses the scheduler to lock the database so | |
that there is no race condition when logging / syncing to the Hugging Face Dataset. | |
""" | |
db_path = SQLiteStorage.init_db(project) | |
with SQLiteStorage.get_scheduler().lock: | |
with sqlite3.connect(db_path) as conn: | |
cursor = conn.cursor() | |
cursor.execute( | |
""" | |
SELECT MAX(step) | |
FROM metrics | |
WHERE project_name = ? AND run_name = ? | |
""", | |
(project, run), | |
) | |
last_step = cursor.fetchone()[0] | |
current_step = 0 if last_step is None else last_step + 1 | |
current_timestamp = datetime.now().isoformat() | |
cursor.execute( | |
""" | |
INSERT INTO metrics | |
(timestamp, project_name, run_name, step, metrics) | |
VALUES (?, ?, ?, ?, ?) | |
""", | |
( | |
current_timestamp, | |
project, | |
run, | |
current_step, | |
json.dumps(metrics), | |
), | |
) | |
conn.commit() | |
def bulk_log( | |
project: str, | |
run: str, | |
metrics_list: list[dict], | |
steps: list[int] | None = None, | |
timestamps: list[str] | None = None, | |
): | |
"""Bulk log metrics to the database with specified steps and timestamps.""" | |
if not metrics_list: | |
return | |
if steps is None: | |
steps = list(range(len(metrics_list))) | |
if timestamps is None: | |
timestamps = [datetime.now().isoformat()] * len(metrics_list) | |
if len(metrics_list) != len(steps) or len(metrics_list) != len(timestamps): | |
raise ValueError( | |
"metrics_list, steps, and timestamps must have the same length" | |
) | |
db_path = SQLiteStorage.init_db(project) | |
with SQLiteStorage.get_scheduler().lock: | |
with sqlite3.connect(db_path) as conn: | |
cursor = conn.cursor() | |
data = [] | |
for i, metrics in enumerate(metrics_list): | |
data.append( | |
( | |
timestamps[i], | |
project, | |
run, | |
steps[i], | |
json.dumps(metrics), | |
) | |
) | |
cursor.executemany( | |
""" | |
INSERT INTO metrics | |
(timestamp, project_name, run_name, step, metrics) | |
VALUES (?, ?, ?, ?, ?) | |
""", | |
data, | |
) | |
conn.commit() | |
def get_metrics(project: str, run: str) -> list[dict]: | |
"""Retrieve metrics for a specific run. The metrics also include the step count (int) and the timestamp (datetime object).""" | |
db_path = SQLiteStorage.get_project_db_path(project) | |
if not os.path.exists(db_path): | |
return [] | |
with sqlite3.connect(db_path) as conn: | |
cursor = conn.cursor() | |
cursor.execute( | |
""" | |
SELECT timestamp, step, metrics | |
FROM metrics | |
WHERE project_name = ? AND run_name = ? | |
ORDER BY timestamp | |
""", | |
(project, run), | |
) | |
rows = cursor.fetchall() | |
results = [] | |
for row in rows: | |
timestamp, step, metrics_json = row | |
metrics = json.loads(metrics_json) | |
metrics["timestamp"] = timestamp | |
metrics["step"] = step | |
results.append(metrics) | |
return results | |
def get_projects() -> list[str]: | |
"""Get list of all projects by scanning database files.""" | |
projects = [] | |
if not os.path.exists(TRACKIO_DIR): | |
return projects | |
db_files = glob.glob(os.path.join(TRACKIO_DIR, "*.db")) | |
for db_file in db_files: | |
try: | |
with sqlite3.connect(db_file) as conn: | |
cursor = conn.cursor() | |
cursor.execute( | |
"SELECT name FROM sqlite_master WHERE type='table' AND name='metrics'" | |
) | |
if cursor.fetchone(): | |
cursor.execute("SELECT DISTINCT project_name FROM metrics") | |
project_names = [row[0] for row in cursor.fetchall()] | |
projects.extend(project_names) | |
except sqlite3.Error: | |
continue | |
return list(set(projects)) | |
def get_runs(project: str) -> list[str]: | |
"""Get list of all runs for a project.""" | |
db_path = SQLiteStorage.get_project_db_path(project) | |
if not os.path.exists(db_path): | |
return [] | |
with sqlite3.connect(db_path) as conn: | |
cursor = conn.cursor() | |
cursor.execute( | |
"SELECT DISTINCT run_name FROM metrics WHERE project_name = ?", | |
(project,), | |
) | |
return [row[0] for row in cursor.fetchall()] | |
def finish(self): | |
"""Cleanup when run is finished.""" | |
pass | |