Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,6 @@ import torch
|
|
3 |
model = torch.hub.load('pytorch/vision:v0.6.0', 'resnet18', pretrained=True).eval()
|
4 |
|
5 |
import requests
|
6 |
-
from PIL import Image
|
7 |
from torchvision import transforms
|
8 |
|
9 |
# Download human-readable labels for ImageNet.
|
@@ -11,7 +10,6 @@ response = requests.get("https://git.io/JJkYN")
|
|
11 |
labels = response.text.split("\n")
|
12 |
|
13 |
def predict(inp):
|
14 |
-
inp = Image.fromarray(inp.astype('uint8'), 'RGB')
|
15 |
inp = transforms.ToTensor()(inp).unsqueeze(0)
|
16 |
with torch.no_grad():
|
17 |
prediction = torch.nn.functional.softmax(model(inp)[0], dim=0)
|
@@ -21,7 +19,7 @@ def predict(inp):
|
|
21 |
import gradio as gr
|
22 |
|
23 |
gr.Interface(fn=predict,
|
24 |
-
inputs="
|
25 |
outputs=gr.outputs.Label(num_top_classes=3),
|
26 |
examples=["lion.jpg", "cheetah.jpg"],
|
27 |
theme="default",
|
|
|
3 |
model = torch.hub.load('pytorch/vision:v0.6.0', 'resnet18', pretrained=True).eval()
|
4 |
|
5 |
import requests
|
|
|
6 |
from torchvision import transforms
|
7 |
|
8 |
# Download human-readable labels for ImageNet.
|
|
|
10 |
labels = response.text.split("\n")
|
11 |
|
12 |
def predict(inp):
|
|
|
13 |
inp = transforms.ToTensor()(inp).unsqueeze(0)
|
14 |
with torch.no_grad():
|
15 |
prediction = torch.nn.functional.softmax(model(inp)[0], dim=0)
|
|
|
19 |
import gradio as gr
|
20 |
|
21 |
gr.Interface(fn=predict,
|
22 |
+
inputs=gr.inputs.Image(type="pil"),
|
23 |
outputs=gr.outputs.Label(num_top_classes=3),
|
24 |
examples=["lion.jpg", "cheetah.jpg"],
|
25 |
theme="default",
|