|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium") |
|
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium") |
|
|
|
def predict(input, history=[]): |
|
|
|
new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt') |
|
|
|
|
|
bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1) |
|
|
|
|
|
history = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id).tolist() |
|
|
|
|
|
response = tokenizer.decode(history[0]).split("<|endoftext|>") |
|
response.remove("") |
|
|
|
|
|
html = "<div class='chatbot'>" |
|
for m, msg in enumerate(response): |
|
cls = "user" if m%2 == 0 else "bot" |
|
html += "<div class='msg {}'> {}</div>".format(cls, msg) |
|
html += "</div>" |
|
|
|
return html, history |
|
|
|
import gradio as gr |
|
|
|
css = """ |
|
.chatbox {display:flex;flex-direction:column} |
|
.msg {padding:4px;margin-bottom:4px;border-radius:4px;width:80%} |
|
.msg.user {background-color:cornflowerblue;color:white} |
|
.msg.bot {background-color:lightgray;align-self:self-end} |
|
.footer {display:none !important} |
|
""" |
|
|
|
gr.Interface(fn=predict, |
|
theme="default", |
|
inputs=[gr.inputs.Textbox(placeholder="How are you?"), "state"], |
|
outputs=["html", "state"], |
|
css=css).launch() |
|
|