Spaces:
Sleeping
Sleeping
import pandas as pd | |
class DemandAssessment: | |
def __init__(self): | |
self.raw_score = pd.read_csv("data/demand_raw.csv") | |
def print_data(self): | |
return self.raw_score | |
def get_demand_score(self, region, city, district): | |
def calculate_normalized_score(score: float, flag: str ) -> str: | |
map = dict(city=[0, 2.70238], region=[0, 1.234568], country=[0, 0.289575]) | |
threshold = map[flag] | |
if score >= threshold[1]: | |
return "High" | |
elif threshold[0] < score < threshold[1]: | |
return "Moderate" | |
else: | |
return "Low" | |
if region: | |
temp = self.raw_score[ | |
(self.raw_score["Region"] == region) & | |
(self.raw_score["City"] == city) & | |
(self.raw_score["District"] == district) | |
] | |
else: | |
temp = self.raw_score[ | |
(self.raw_score["City"] == city) & | |
(self.raw_score["District"] == district) | |
] | |
temp = temp.iloc[0] | |
return { | |
"City_Normalized_Score": temp["City Scaled Score"], | |
"Region_Normalized_Score": temp["Region Scaled Score"], | |
"Country_Normalized_Score": temp["Region Scaled Score"], | |
"City_Demand_Label": calculate_normalized_score(temp["City Scaled Score"], "city"), | |
"Region_Demand_Label": calculate_normalized_score(temp["Region Scaled Score"], "region"), | |
"Country_Demand_Label": calculate_normalized_score(temp["Region Scaled Score"], "country"), | |
} | |