abhishekrs4's picture
added iam_line_recognition module
bd421ea
raw
history blame
8.35 kB
import os
import torch
import torch.nn
import numpy as np
from PIL import Image
from skimage.io import imread
import torchvision.transforms as transforms
from torch.utils.data import Dataset, DataLoader
from sklearn.model_selection import train_test_split
def read_IAM_label_txt_file(file_txt_labels):
"""
---------
Arguments
---------
file_txt_labels : str
full path to the text file containing labels
-------
Returns
-------
a tuple of
all_image_files : list
a list of all image file names
all_labels : list
a list of all labels
"""
label_file_handler = open(file_txt_labels, mode="r")
all_lines = label_file_handler.readlines()
num_lines = len(all_lines)
all_image_files = []
all_labels = []
for cur_line_num in range(num_lines):
if cur_line_num % 3 == 0:
all_image_files.append(all_lines[cur_line_num].strip())
elif cur_line_num % 3 == 1:
all_labels.append(all_lines[cur_line_num].strip())
else:
continue
return all_image_files, all_labels
class HWRecogIAMDataset(Dataset):
"""
Main dataset class to be used only for training, validation and internal testing
"""
CHAR_SET = ' !"#&\'()*+,-./0123456789:;?ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
CHAR_2_LABEL = {char: i + 1 for i, char in enumerate(CHAR_SET)}
LABEL_2_CHAR = {label: char for char, label in CHAR_2_LABEL.items()}
def __init__(self, list_image_files, list_labels, dir_images, image_height=32, image_width=768, which_set="train"):
"""
---------
Arguments
---------
list_image_files : list
list of image files
list_labels : list
list of labels
dir_images : str
full path to directory containing images
image_height : int
image height (default: 32)
image_width : int
image width (default: 768)
which_set : str
a string indicating which set is being used (default: train)
"""
self.list_labels = list_labels
self.dir_images = dir_images
self.list_image_files = list_image_files
self.image_width = image_width
self.image_height = image_height
self.which_set = which_set
if self.which_set == "train":
# apply data augmentation only for train set
self.transform = transforms.Compose([
transforms.ToPILImage(),
transforms.Resize((self.image_height, self.image_width), Image.BILINEAR),
transforms.RandomAffine(degrees=[-0.75, 0.75], translate=[0, 0.05], scale=[0.75, 1],
shear=[-35, 35], interpolation=transforms.InterpolationMode.BILINEAR, fill=255,
),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225],
),
])
else:
self.transform = transforms.Compose([
transforms.ToPILImage(),
transforms.Resize((self.image_height, self.image_width), Image.BILINEAR),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225],
),
])
def __len__(self):
return len(self.list_image_files)
def __getitem__(self, idx):
image_file_name = self.list_image_files[idx]
image_gray = imread(os.path.join(self.dir_images, image_file_name))
image_3_channel = np.repeat(np.expand_dims(image_gray, -1), 3, -1)
image_3_channel = self.transform(image_3_channel)
label_string = self.list_labels[idx]
label_encoded = [self.CHAR_2_LABEL[c] for c in label_string]
label_length = [len(label_encoded)]
label_encoded = torch.LongTensor(label_encoded)
label_length = torch.LongTensor(label_length)
return image_3_channel, label_encoded, label_length
def IAM_collate_fn(batch):
"""
collate function
---------
Arguments
---------
batch : tuple
a batch of input data as a tuple
-------
Returns
-------
a collated tuple of
images : tensor
tensor of batch images
labels : tensor
tensor of batch labels
label_lengths : tensor
tensor of batch label lengths
"""
images, labels, label_lengths = zip(*batch)
images = torch.stack(images, 0)
labels = torch.cat(labels, 0)
label_lengths = torch.cat(label_lengths, 0)
return images, labels, label_lengths
def split_dataset(file_txt_labels, for_train=True):
"""
---------
Arguments
---------
file_txt_labels : str
full path to the text file containing labels
for_train : bool
indicating whether split is for training or internal testing
-------
Returns
-------
a tuple of files depending for train or internal testing
"""
all_image_files, all_labels = read_IAM_label_txt_file(file_txt_labels)
train_image_files, test_image_files, train_labels, test_labels = train_test_split(all_image_files, all_labels, test_size=0.1, random_state=4)
train_image_files, valid_image_files, train_labels, valid_labels = train_test_split(train_image_files, train_labels, test_size=0.1, random_state=4)
if for_train:
return train_image_files, valid_image_files, train_labels, valid_labels
else:
return test_image_files, test_labels
def get_dataloaders_for_training(train_x, train_y, valid_x, valid_y, dir_images, image_height=32, image_width=768, batch_size=8):
"""
---------
Arguments
---------
train_x : list
list of train file names
train_y : list
list of train labels
valid_x : list
list of validation file names
valid_y : list
list of validation labels
dir_images : str
full directory path containing the images
image_height : int
image height (default: 32)
image_width : int
image width (default: 768)
batch_size : int
batch size (default: 8)
-------
Returns
-------
a tuple of dataloaders objects
train_loader : object
object of train set dataloader
valid_loader : object
object of validation set dataloader
"""
train_dataset = HWRecogIAMDataset(train_x, train_y, dir_images, image_height=image_height, image_width=image_width, which_set="train")
valid_dataset = HWRecogIAMDataset(valid_x, valid_y, dir_images, image_height=image_height, image_width=image_width, which_set="valid")
train_loader = DataLoader(
train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=4,
collate_fn=IAM_collate_fn,
)
valid_loader = DataLoader(
valid_dataset,
batch_size=batch_size,
shuffle=False,
num_workers=4,
collate_fn=IAM_collate_fn,
)
return train_loader, valid_loader
def get_dataloader_for_testing(test_x, test_y, dir_images, image_height=32, image_width=768, batch_size=1):
"""
---------
Arguments
---------
test_x : list
list of test file names
test_y : list
list of test labels
dir_images : str
full directory path containing the images
image_height : int
image height (default: 32)
image_width : int
image width (default: 768)
batch_size : int
batch size (default: 1)
-------
Returns
-------
test_loader : object
object of test set dataloader
"""
test_dataset = HWRecogIAMDataset(test_x, test_y, dir_images=dir_images, image_height=image_height, image_width=image_width, which_set="test")
test_loader = DataLoader(
test_dataset,
batch_size=batch_size,
shuffle=False,
num_workers=4,
collate_fn=IAM_collate_fn,
)
return test_loader