abhishek's picture
abhishek HF staff
first commit
58f667f
# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn
import torch.nn.functional as F
from annotator.uniformer.mmcv.cnn import CONV_LAYERS, ConvAWS2d, constant_init
from annotator.uniformer.mmcv.ops.deform_conv import deform_conv2d
from annotator.uniformer.mmcv.utils import TORCH_VERSION, digit_version
@CONV_LAYERS.register_module(name='SAC')
class SAConv2d(ConvAWS2d):
"""SAC (Switchable Atrous Convolution)
This is an implementation of SAC in DetectoRS
(https://arxiv.org/pdf/2006.02334.pdf).
Args:
in_channels (int): Number of channels in the input image
out_channels (int): Number of channels produced by the convolution
kernel_size (int or tuple): Size of the convolving kernel
stride (int or tuple, optional): Stride of the convolution. Default: 1
padding (int or tuple, optional): Zero-padding added to both sides of
the input. Default: 0
padding_mode (string, optional): ``'zeros'``, ``'reflect'``,
``'replicate'`` or ``'circular'``. Default: ``'zeros'``
dilation (int or tuple, optional): Spacing between kernel elements.
Default: 1
groups (int, optional): Number of blocked connections from input
channels to output channels. Default: 1
bias (bool, optional): If ``True``, adds a learnable bias to the
output. Default: ``True``
use_deform: If ``True``, replace convolution with deformable
convolution. Default: ``False``.
"""
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
groups=1,
bias=True,
use_deform=False):
super().__init__(
in_channels,
out_channels,
kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
bias=bias)
self.use_deform = use_deform
self.switch = nn.Conv2d(
self.in_channels, 1, kernel_size=1, stride=stride, bias=True)
self.weight_diff = nn.Parameter(torch.Tensor(self.weight.size()))
self.pre_context = nn.Conv2d(
self.in_channels, self.in_channels, kernel_size=1, bias=True)
self.post_context = nn.Conv2d(
self.out_channels, self.out_channels, kernel_size=1, bias=True)
if self.use_deform:
self.offset_s = nn.Conv2d(
self.in_channels,
18,
kernel_size=3,
padding=1,
stride=stride,
bias=True)
self.offset_l = nn.Conv2d(
self.in_channels,
18,
kernel_size=3,
padding=1,
stride=stride,
bias=True)
self.init_weights()
def init_weights(self):
constant_init(self.switch, 0, bias=1)
self.weight_diff.data.zero_()
constant_init(self.pre_context, 0)
constant_init(self.post_context, 0)
if self.use_deform:
constant_init(self.offset_s, 0)
constant_init(self.offset_l, 0)
def forward(self, x):
# pre-context
avg_x = F.adaptive_avg_pool2d(x, output_size=1)
avg_x = self.pre_context(avg_x)
avg_x = avg_x.expand_as(x)
x = x + avg_x
# switch
avg_x = F.pad(x, pad=(2, 2, 2, 2), mode='reflect')
avg_x = F.avg_pool2d(avg_x, kernel_size=5, stride=1, padding=0)
switch = self.switch(avg_x)
# sac
weight = self._get_weight(self.weight)
zero_bias = torch.zeros(
self.out_channels, device=weight.device, dtype=weight.dtype)
if self.use_deform:
offset = self.offset_s(avg_x)
out_s = deform_conv2d(x, offset, weight, self.stride, self.padding,
self.dilation, self.groups, 1)
else:
if (TORCH_VERSION == 'parrots'
or digit_version(TORCH_VERSION) < digit_version('1.5.0')):
out_s = super().conv2d_forward(x, weight)
elif digit_version(TORCH_VERSION) >= digit_version('1.8.0'):
# bias is a required argument of _conv_forward in torch 1.8.0
out_s = super()._conv_forward(x, weight, zero_bias)
else:
out_s = super()._conv_forward(x, weight)
ori_p = self.padding
ori_d = self.dilation
self.padding = tuple(3 * p for p in self.padding)
self.dilation = tuple(3 * d for d in self.dilation)
weight = weight + self.weight_diff
if self.use_deform:
offset = self.offset_l(avg_x)
out_l = deform_conv2d(x, offset, weight, self.stride, self.padding,
self.dilation, self.groups, 1)
else:
if (TORCH_VERSION == 'parrots'
or digit_version(TORCH_VERSION) < digit_version('1.5.0')):
out_l = super().conv2d_forward(x, weight)
elif digit_version(TORCH_VERSION) >= digit_version('1.8.0'):
# bias is a required argument of _conv_forward in torch 1.8.0
out_l = super()._conv_forward(x, weight, zero_bias)
else:
out_l = super()._conv_forward(x, weight)
out = switch * out_s + (1 - switch) * out_l
self.padding = ori_p
self.dilation = ori_d
# post-context
avg_x = F.adaptive_avg_pool2d(out, output_size=1)
avg_x = self.post_context(avg_x)
avg_x = avg_x.expand_as(out)
out = out + avg_x
return out