improved_diffusion / datasets /lsun_bedroom.py
abhishek-kumar's picture
Upload 25 files
ad88530
"""
Convert an LSUN lmdb database into a directory of images.
"""
import argparse
import io
import os
from PIL import Image
import lmdb
import numpy as np
def read_images(lmdb_path, image_size):
env = lmdb.open(lmdb_path, map_size=1099511627776, max_readers=100, readonly=True)
with env.begin(write=False) as transaction:
cursor = transaction.cursor()
for _, webp_data in cursor:
img = Image.open(io.BytesIO(webp_data))
width, height = img.size
scale = image_size / min(width, height)
img = img.resize(
(int(round(scale * width)), int(round(scale * height))),
resample=Image.BOX,
)
arr = np.array(img)
h, w, _ = arr.shape
h_off = (h - image_size) // 2
w_off = (w - image_size) // 2
arr = arr[h_off : h_off + image_size, w_off : w_off + image_size]
yield arr
def dump_images(out_dir, images, prefix):
if not os.path.exists(out_dir):
os.mkdir(out_dir)
for i, img in enumerate(images):
Image.fromarray(img).save(os.path.join(out_dir, f"{prefix}_{i:07d}.png"))
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--image-size", help="new image size", type=int, default=256)
parser.add_argument("--prefix", help="class name", type=str, default="bedroom")
parser.add_argument("lmdb_path", help="path to an LSUN lmdb database")
parser.add_argument("out_dir", help="path to output directory")
args = parser.parse_args()
images = read_images(args.lmdb_path, args.image_size)
dump_images(args.out_dir, images, args.prefix)
if __name__ == "__main__":
main()