Spaces:
Running
Running
:sparkles: add gradio interface
Browse files
app.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from PIL import Image
|
3 |
+
from diffusers import StableDiffusionLDM3DPipeline
|
4 |
+
|
5 |
+
# Load the model. Do this once to avoid reloading on every request.
|
6 |
+
pipe = StableDiffusionLDM3DPipeline.from_pretrained("Intel/ldm3d-pano")
|
7 |
+
pipe.to("cuda")
|
8 |
+
|
9 |
+
|
10 |
+
def generate_images(prompt, guidance_scale=7.0, num_inference_steps=50):
|
11 |
+
output = pipe(
|
12 |
+
prompt,
|
13 |
+
width=1024,
|
14 |
+
height=512,
|
15 |
+
guidance_scale=guidance_scale,
|
16 |
+
num_inference_steps=num_inference_steps,
|
17 |
+
)
|
18 |
+
|
19 |
+
rgb_image, depth_image = output.rgb, output.depth
|
20 |
+
|
21 |
+
# Convert to PIL Images for Gradio compatibility
|
22 |
+
rgb_image = Image.fromarray(rgb_image[0])
|
23 |
+
depth_image = Image.fromarray(depth_image[0])
|
24 |
+
|
25 |
+
return rgb_image, depth_image
|
26 |
+
|
27 |
+
|
28 |
+
iface = gr.Interface(
|
29 |
+
fn=generate_images,
|
30 |
+
inputs=[
|
31 |
+
"text",
|
32 |
+
gr.Slider(0, 20, value=7.0, label="Guidance Scale"),
|
33 |
+
gr.Slider(0, 100, value=50, label="Inference Steps")
|
34 |
+
],
|
35 |
+
outputs=["image", "image"],
|
36 |
+
title="ldm3d-pano Image Generator"
|
37 |
+
)
|
38 |
+
|
39 |
+
iface.launch()
|