Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import easyocr
|
3 |
+
import gradio as gr
|
4 |
+
import base64
|
5 |
+
import json
|
6 |
+
|
7 |
+
def text_extraction(image):
|
8 |
+
# Convert base64 image to OpenCV format
|
9 |
+
image = base64.b64decode(image.split(",")[1])
|
10 |
+
nparr = np.frombuffer(image, np.uint8)
|
11 |
+
img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
|
12 |
+
|
13 |
+
# Instance text detector
|
14 |
+
reader = easyocr.Reader(['en'], gpu=False)
|
15 |
+
|
16 |
+
# Detect text on image
|
17 |
+
text_ = reader.readtext(img)
|
18 |
+
|
19 |
+
threshold = 0.25
|
20 |
+
# Draw bbox and text
|
21 |
+
for t_, t in enumerate(text_):
|
22 |
+
bbox, text, score = t
|
23 |
+
|
24 |
+
if score > threshold:
|
25 |
+
cv2.rectangle(img, tuple(map(int, bbox[0])), tuple(map(int, bbox[2])), (255, 0, 0), 2)
|
26 |
+
|
27 |
+
# Encode image to base64
|
28 |
+
retval, buffer = cv2.imencode('.jpg', img)
|
29 |
+
img_base64 = base64.b64encode(buffer).decode('utf-8')
|
30 |
+
|
31 |
+
# Create JSON response
|
32 |
+
response_json = {
|
33 |
+
'annotated_image_base64': img_base64,
|
34 |
+
'text_data': text_
|
35 |
+
}
|
36 |
+
|
37 |
+
# Convert the dictionary to a JSON string
|
38 |
+
response_json_str = json.dumps(response_json, default=str)
|
39 |
+
|
40 |
+
return response_json_str
|
41 |
+
|
42 |
+
# Define Gradio interface
|
43 |
+
iface = gr.Interface(
|
44 |
+
fn=text_extraction,
|
45 |
+
inputs=gr.Image(),
|
46 |
+
outputs=["image", "json"]
|
47 |
+
)
|
48 |
+
|
49 |
+
# Launch the Gradio interface
|
50 |
+
iface.launch()
|