abhicodes's picture
Update app.py
0db53a4 verified
raw
history blame
15.2 kB
import math
import os
from io import BytesIO
import gradio as gr
import cv2
from PIL import Image
import requests
from transformers import pipeline
from pydub import AudioSegment
from faster_whisper import WhisperModel
import joblib
import mediapipe as mp
import numpy as np
import pandas as pd
import moviepy.editor as mpe
import time
body_lang_model = joblib.load('body_language.pkl')
mp_holistic = mp.solutions.holistic
holistic = mp_holistic.Holistic(min_detection_confidence=0.5, min_tracking_confidence=0.5)
mp_face_mesh = mp.solutions.face_mesh
face_mesh = mp_face_mesh.FaceMesh(min_detection_confidence=0.5, min_tracking_confidence=0.5)
theme = gr.themes.Base(
primary_hue="cyan",
secondary_hue="blue",
neutral_hue="slate",
)
model = WhisperModel("small", device="cpu", compute_type="int8")
API_KEY = os.getenv('HF_API_KEY')
pipe1 = pipeline("image-classification", model="dima806/facial_emotions_image_detection")
pipe2 = pipeline("text-classification", model="SamLowe/roberta-base-go_emotions")
# pipe3 = pipeline("audio-classification", model="ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition")
# FACE_API_URL = "https://api-inference.huggingface.co/models/dima806/facial_emotions_image_detection"
# TEXT_API_URL = "https://api-inference.huggingface.co/models/SamLowe/roberta-base-go_emotions"
AUDIO_API_URL = "https://api-inference.huggingface.co/models/ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition"
headers = {"Authorization": "Bearer " + API_KEY + ""}
def extract_frames(video_path):
clip = mpe.VideoFileClip(video_path)
clip.write_videofile('mp4file.mp4', fps=60)
cap = cv2.VideoCapture('mp4file.mp4')
fps = int(cap.get(cv2.CAP_PROP_FPS))
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
# try:
# while True:
# ret, frame = cap.read()
# if not ret:
# break
# total_frames += 1
# except Exception as e:
# print("Done")
# cap.release()
# time.sleep(3)
# cap = cv2.VideoCapture(video_path)
interval = int(fps/2)
print(interval, total_frames)
images = []
result = []
distract_count = 0
total_count = 0
output_list = []
for i in range(0, total_frames, interval):
total_count += 1
cap.set(cv2.CAP_PROP_POS_FRAMES, i)
ret, frame = cap.read()
if ret:
image = cv2.cvtColor(cv2.flip(frame, 1), cv2.COLOR_BGR2RGB)
image.flags.writeable = False
results = face_mesh.process(image)
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
img_h, img_w, img_c = image.shape
face_3d = []
face_2d = []
flag = False
if results.multi_face_landmarks:
for face_landmarks in results.multi_face_landmarks:
for idx, lm in enumerate(face_landmarks.landmark):
if idx == 33 or idx == 263 or idx == 1 or idx == 61 or idx == 291 or idx == 199:
if idx == 1:
nose_2d = (lm.x * img_w, lm.y * img_h)
nose_3d = (lm.x * img_w, lm.y * img_h, lm.z * 3000)
x, y = int(lm.x * img_w), int(lm.y * img_h)
face_2d.append([x, y])
face_3d.append([x, y, lm.z])
face_2d = np.array(face_2d, dtype=np.float64)
face_3d = np.array(face_3d, dtype=np.float64)
focal_length = 1 * img_w
cam_matrix = np.array([ [focal_length, 0, img_h / 2],
[0, focal_length, img_w / 2],
[0, 0, 1]])
dist_matrix = np.zeros((4, 1), dtype=np.float64)
success, rot_vec, trans_vec = cv2.solvePnP(face_3d, face_2d, cam_matrix, dist_matrix)
rmat, jac = cv2.Rodrigues(rot_vec)
angles, mtxR, mtxQ, Qx, Qy, Qz = cv2.RQDecomp3x3(rmat)
x = angles[0] * 360
y = angles[1] * 360
z = angles[2] * 360
if y < -7 or y > 7 or x < -7 or x > 7:
flag = True
else:
flag = False
if flag == True:
distract_count += 1
image2 = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
results2 = holistic.process(image2)
pose = results2.pose_landmarks.landmark
pose_row = list(np.array([[landmark.x, landmark.y, landmark.z, landmark.visibility] for landmark in pose]).flatten())
face = results2.face_landmarks.landmark
face_row = list(np.array([[landmark.x, landmark.y, landmark.z, landmark.visibility] for landmark in face]).flatten())
row = pose_row+face_row
X = pd.DataFrame([row])
body_language_class = body_lang_model.predict(X)[0]
body_language_prob = body_lang_model.predict_proba(X)[0]
output_dict = {}
for class_name, prob in zip(body_lang_model.classes_, body_language_prob):
output_dict[class_name] = prob
output_list.append(output_dict)
pil_image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
response = pipe1(pil_image)
temp = {}
for ele in response:
label, score = ele.values()
temp[label] = score
result.append(temp)
images.append((cv2.cvtColor(frame, cv2.COLOR_BGR2RGB), f"Sentiments: {temp}, Distraction: {1 if flag == True else 0}"))
distraction_rate = distract_count/total_count
total_bad_prob = 0
total_good_prob = 0
for output_dict in output_list:
total_bad_prob += output_dict['Bad']
total_good_prob += output_dict['Good']
num_frames = len(output_list)
avg_bad_prob = total_bad_prob / num_frames
avg_good_prob = total_good_prob / num_frames
final_output = {'Bad': avg_bad_prob, 'Good': avg_good_prob}
print("Frame extraction completed.")
cap.release()
return images, result, final_output, distraction_rate
def analyze_sentiment(text):
response = pipe2(text)
sentiment_results = {}
for ele in response:
label, score = ele.values()
sentiment_results[label] = score
# sentiment_list = response.json()[0]
# sentiment_results = {results['label']: results['score'] for results in sentiment_list}
return sentiment_results
def video_to_audio(input_video):
frames_images, frames_sentiments, body_language, distraction_rate = extract_frames(input_video)
cap = cv2.VideoCapture(input_video)
fps = int(cap.get(cv2.CAP_PROP_FPS))
audio = AudioSegment.from_file(input_video)
audio_binary = audio.export(format="wav").read()
audio_bytesio = BytesIO(audio_binary)
audio_bytesio2 = BytesIO(audio_binary)
segments, info = model.transcribe(audio_bytesio, beam_size=5)
response = requests.post(AUDIO_API_URL, headers=headers, data=audio_bytesio2)
# response = pipe3(audio_bytesio)
# audio_list = list(response.json())
# formatted_response = {results['label'] : results['score'] for results in audio_list}
print(response.json())
formatted_response = {}
for ele in response.json():
score, label = ele.values()
formatted_response[label] = score
# print("Detected language '%s' with probability %f" % (info.language, info.language_probability))
transcript = ''
audio_divide_sentiment = ''
video_sentiment_markdown = ''
video_sentiment_final = []
final_output = []
for segment in segments:
transcript = transcript + segment.text + " "
transcript_segment_sentiment = analyze_sentiment(segment.text)
audio_divide_sentiment += "[%.2fs -> %.2fs] %s : %s`\`" % (segment.start, segment.end, segment.text, transcript_segment_sentiment)
emotion_totals = {
'admiration': 0.0,
'amusement': 0.0,
'angry': 0.0,
'annoyance': 0.0,
'approval': 0.0,
'caring': 0.0,
'confusion': 0.0,
'curiosity': 0.0,
'desire': 0.0,
'disappointment': 0.0,
'disapproval': 0.0,
'disgust': 0.0,
'embarrassment': 0.0,
'excitement': 0.0,
'fear': 0.0,
'gratitude': 0.0,
'grief': 0.0,
'happy': 0.0,
'love': 0.0,
'nervousness': 0.0,
'optimism': 0.0,
'pride': 0.0,
'realization': 0.0,
'relief': 0.0,
'remorse': 0.0,
'sad': 0.0,
'surprise': 0.0,
'neutral': 0.0
}
counter = 0
for i in range(math.ceil(segment.start), math.floor(segment.end)):
for emotion in frames_sentiments[i].keys():
emotion_totals[emotion] += frames_sentiments[i].get(emotion)
counter += 1
for emotion in emotion_totals:
emotion_totals[emotion] /= counter
video_sentiment_final.append(emotion_totals)
video_segment_sentiment = {key: value for key, value in emotion_totals.items() if value != 0.0}
video_sentiment_markdown += f"Frame {fps*math.ceil(segment.start)} - Frame {fps*math.floor(segment.end)} : {video_segment_sentiment}`\`"
segment_finals = {segment.id: (segment.text, segment.start, segment.end, transcript_segment_sentiment, video_segment_sentiment)}
final_output.append(segment_finals)
total_transcript_sentiment = {key: value for key, value in analyze_sentiment(transcript).items() if value >= 0.01}
emotion_finals = {
'admiration': 0.0,
'amusement': 0.0,
'angry': 0.0,
'annoyance': 0.0,
'approval': 0.0,
'caring': 0.0,
'confusion': 0.0,
'curiosity': 0.0,
'desire': 0.0,
'disappointment': 0.0,
'disapproval': 0.0,
'disgust': 0.0,
'embarrassment': 0.0,
'excitement': 0.0,
'fear': 0.0,
'gratitude': 0.0,
'grief': 0.0,
'happy': 0.0,
'love': 0.0,
'nervousness': 0.0,
'optimism': 0.0,
'pride': 0.0,
'realization': 0.0,
'relief': 0.0,
'remorse': 0.0,
'sad': 0.0,
'surprise': 0.0,
'neutral': 0.0
}
for i in range(0, video_sentiment_final.__len__()-1):
for emotion in video_sentiment_final[i].keys():
emotion_finals[emotion] += video_sentiment_final[i].get(emotion)
for emotion in emotion_finals:
emotion_finals[emotion] /= video_sentiment_final.__len__()
emotion_finals = {key: value for key, value in emotion_finals.items() if value != 0.0}
print("Processing Completed!!")
payload = {
'from': 'gradio',
'emotions_final': emotion_finals,
'body_language': body_language,
'distraction_rate': distraction_rate,
'formatted_response': formatted_response,
'total_transcript_sentiment': total_transcript_sentiment
}
# response = requests.post('http://127.0.0.1:5000/interview', json=payload)
print(payload)
return str(final_output), frames_images, total_transcript_sentiment, audio_divide_sentiment, formatted_response, video_sentiment_markdown, emotion_finals, body_language, {'Distraction Rate': distraction_rate}
with gr.Blocks(theme=theme, css=".gradio-container { background: rgba(255, 255, 255, 0.2) !important; box-shadow: 0 8px 32px 0 rgba( 31, 38, 135, 0.37 ) !important; backdrop-filter: blur( 10px ) !important; -webkit-backdrop-filter: blur( 10px ) !important; border-radius: 10px !important; border: 1px solid rgba( 0, 0, 0, 0.5 ) !important;}") as Video:
with gr.Column():
gr.Markdown("""# Interview AI Video Processing Model""")
with gr.Row():
gr.Markdown("""
### 🤖 A cross-model ML model for Video processing in Interview AI Video Processing involves combining different machine learning models to analyze sentiments expressed in healthcare-related videos.
- Facial Expression Recognition Model [Google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) 😊😢😰
- Speech Recognition Model [OpenAI/Whisper](https://github.com/openai/whisper) 🗣️🎤
- Text Analysis Model [RoBERTa-base-go-emotions](https://huggingface.co/SamLowe/roberta-base-go_emotions) 📝📜
- Contextual Understanding Model (Sentiment Analysis) 🔄🌐
""")
gr.Markdown("""### By combining the outputs of these models, the cross-model approach aims to capture a more comprehensive view of the sentiments within the interview videos. This way, candidates can gain insights into thier interview experiences and emotions, facilitating better understanding and improvements in actual interviews. """)
with gr.Row():
with gr.Column():
input_video = gr.Video(sources=["upload", "webcam"], format='mp4')
button = gr.Button("Process", variant="primary")
gr.Examples(inputs=input_video, examples=[os.path.join(os.path.dirname(__file__), "test_video_1.mp4")])
with gr.Column():
with gr.Row():
video_sentiment_final = gr.Label(label="Video Sentiment Score")
speech_emotions = gr.Label(label="Audio Emotion Score")
with gr.Row():
overall_transcript_score = gr.Label(label="Overall Transcript Score")
body_language = gr.Label(label="Body Language")
distraction_rate = gr.Label(label="Distraction Rate")
with gr.Column():
frames_gallery = gr.Gallery(label="Video Frames", show_label=True, elem_id="gallery", columns=[3], rows=[1], object_fit="contain", height="auto")
with gr.Accordion(label="JSON detailed Responses", open=False):
json_output = gr.Textbox(label="JSON Output", info="Overall scores of the above video in segments.", show_label=True, lines=5, show_copy_button=True, interactive=False)
audio_sentiment = gr.Textbox(label="Audio Sentiments", info="Outputs of Audio Processing from the video.", show_label=True, lines=5, show_copy_button=True, interactive=False)
video_sentiment_markdown = gr.Textbox(label="Video Sentiments", info="Outputs of Video Frames processing from the video.", show_label=True, lines=5, show_copy_button=True, interactive=False)
button.click(
fn=video_to_audio,
inputs=input_video,
outputs=[json_output, frames_gallery, overall_transcript_score, audio_sentiment, speech_emotions, video_sentiment_markdown, video_sentiment_final, body_language, distraction_rate]
)
Video.launch()