|
import gradio as gr |
|
import pandas as pd |
|
|
|
data1 = pd.read_csv('ball.csv') |
|
data2 = pd.read_csv('bat.csv') |
|
|
|
datasets = {'Bowling Data': pd.DataFrame(data1), 'Batting Data': pd.DataFrame(data2)} |
|
|
|
|
|
|
|
def filter_data(dataset_name='', name_x='', name_y='', start_date=''): |
|
selected_dataset = datasets.get(dataset_name, pd.DataFrame()) |
|
filtered_df = selected_dataset[ |
|
selected_dataset['name_x'].str.contains(name_x, case=False) & |
|
selected_dataset['name_y'].str.contains(name_y, case=False) & |
|
selected_dataset['start_date'].str.contains(start_date, case=False) |
|
] |
|
return filtered_df |
|
|
|
|
|
title = "Players Performance" |
|
description = "Get the performance of each player in the match." |
|
|
|
|
|
dataset_selector = gr.Dropdown(choices=list(datasets.keys()), label='Select Dataset') |
|
name_x_filter = gr.Textbox(label='Player Name', placeholder='eg. Virat Kohli') |
|
name_y_filter = gr.Textbox(label='Match Detail', placeholder='eg. India v Australia') |
|
start_date_filter = gr.Textbox(label='Match Date', placeholder='eg. 2015-10-13') |
|
|
|
|
|
iface = gr.Interface(fn=filter_data, inputs=[dataset_selector, name_x_filter, name_y_filter, start_date_filter], outputs='dataframe', title=title, description=description,) |
|
|
|
|
|
iface.launch() |
|
|