EC2 Default User commited on
Commit
ad256e1
1 Parent(s): d6cd187

adding code files

Browse files
Files changed (2) hide show
  1. app.py +37 -0
  2. requirements.txt +3 -0
app.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sentence_transformers import SentenceTransformer, CrossEncoder, util
2
+ import torch
3
+ import pickle
4
+ import pandas as pd
5
+ import gradio as gr
6
+
7
+ bi_encoder = SentenceTransformer("multi-qa-MiniLM-L6-cos-v1")
8
+ cross_encoder = CrossEncoder("cross-encoder/ms-marco-MiniLM-L-6-v2")
9
+ corpus_embeddings=pd.read_pickle("corpus_embeddings_cpu.pkl")
10
+ corpus=pd.read_pickle("corpus.pkl")
11
+
12
+ def search(query,top_k=100):
13
+ print("Top 5 Answer by the NSE:")
14
+ print()
15
+ ans=[]
16
+ ##### Sematic Search #####
17
+ # Encode the query using the bi-encoder and find potentially relevant passages
18
+ question_embedding = bi_encoder.encode(query, convert_to_tensor=True)
19
+ hits = util.semantic_search(question_embedding, corpus_embeddings, top_k=top_k)
20
+ hits = hits[0] # Get the hits for the first query
21
+
22
+ ##### Re-Ranking #####
23
+ # Now, score all retrieved passages with the cross_encoder
24
+ cross_inp = [[query, corpus[hit['corpus_id']]] for hit in hits]
25
+ cross_scores = cross_encoder.predict(cross_inp)
26
+
27
+ # Sort results by the cross-encoder scores
28
+ for idx in range(len(cross_scores)):
29
+ hits[idx]['cross-score'] = cross_scores[idx]
30
+
31
+ hits = sorted(hits, key=lambda x: x['cross-score'], reverse=True)
32
+
33
+ for idx, hit in enumerate(hits[0:5]):
34
+ ans.append(corpus[hit['corpus_id']])
35
+ return ans[0],ans[1],ans[2],ans[3],ans[4]
36
+
37
+ iface = gr.Interface(fn=search, inputs=["text"], outputs=["textbox","textbox","textbox","textbox","textbox"]).launch(share=True)
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ sentence-transformers==2.1.0
2
+ torch==1.10.0
3
+ pandas==1.1.5