Spaces:
No application file
No application file
# -*- coding: utf-8 -*- | |
"""num_detect.ipynb | |
Automatically generated by Colab. | |
Original file is located at | |
https://colab.research.google.com/drive/1GcHZ0KGkpSs8vsjRbjMHBRVZ6M86nqYj | |
""" | |
from keras.models import load_model | |
model=load_model(r"C:\Users\Abhijeet Tripathi\Downloads\num_detect (1).keras") | |
import numpy as np | |
import cv2 | |
from keras.preprocessing import image | |
import matplotlib.pyplot as plt | |
def mnist_compatible(image_path, target_size=(28, 28)): | |
img = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE) | |
plt.imshow(img) | |
plt.show() | |
img_resized = cv2.resize(img, target_size) | |
img_inverted = 255 - img_resized | |
img_normalized = img_inverted.astype('float32') / 255.0 | |
img_array = image.img_to_array(img_normalized) | |
img_reshaped = img_array.reshape((*target_size, 1)) | |
return img_reshaped | |
def predict(dict): | |
print(dict) | |
path = dict['composite'] | |
arr = mnist_compatible(path) | |
arr = np.expand_dims(arr, axis=0) | |
return str(np.argmax(model.predict(arr))) | |
import gradio as gr | |
# Import the Brush class | |
from gradio import Brush | |
iface = gr.Interface( | |
fn=predict, | |
inputs=gr.Paint(label="Input Image Component",type="filepath",brush=Brush(colors=["#32cc70"]),canvas_size=(301,601)), | |
outputs="text" | |
) | |
iface.launch(share='True') | |