Commit
Β·
80aa632
1
Parent(s):
adff71c
Add all backend files with Docker support and ffmpeg configuration
Browse files- .gitignore +48 -0
- Dockerfile +32 -0
- agent.py +143 -0
- custom_wrapper.py +55 -0
- link.py +669 -0
- link2.py +828 -0
- qsec.py +31 -0
- real.py +1572 -0
- reel.py +1573 -0
- requirements.txt +33 -0
- sound_agent.py +198 -0
.gitignore
ADDED
|
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# FFmpeg binaries (will be installed via Docker)
|
| 2 |
+
ffmpeg-7.1-essentials_build/
|
| 3 |
+
|
| 4 |
+
# Python
|
| 5 |
+
__pycache__/
|
| 6 |
+
*.py[cod]
|
| 7 |
+
*$py.class
|
| 8 |
+
*.so
|
| 9 |
+
.Python
|
| 10 |
+
env/
|
| 11 |
+
venv/
|
| 12 |
+
ENV/
|
| 13 |
+
build/
|
| 14 |
+
develop-eggs/
|
| 15 |
+
dist/
|
| 16 |
+
downloads/
|
| 17 |
+
eggs/
|
| 18 |
+
.eggs/
|
| 19 |
+
lib/
|
| 20 |
+
lib64/
|
| 21 |
+
parts/
|
| 22 |
+
sdist/
|
| 23 |
+
var/
|
| 24 |
+
wheels/
|
| 25 |
+
*.egg-info/
|
| 26 |
+
.installed.cfg
|
| 27 |
+
*.egg
|
| 28 |
+
|
| 29 |
+
# IDE
|
| 30 |
+
.vscode/
|
| 31 |
+
.idea/
|
| 32 |
+
*.swp
|
| 33 |
+
*.swo
|
| 34 |
+
*~
|
| 35 |
+
|
| 36 |
+
# Environment variables
|
| 37 |
+
.env
|
| 38 |
+
.env.local
|
| 39 |
+
|
| 40 |
+
# OS
|
| 41 |
+
.DS_Store
|
| 42 |
+
Thumbs.db
|
| 43 |
+
|
| 44 |
+
# Temporary files
|
| 45 |
+
*.tmp
|
| 46 |
+
*.log
|
| 47 |
+
temp/
|
| 48 |
+
tmp/
|
Dockerfile
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM python:3.10-slim
|
| 2 |
+
|
| 3 |
+
# Set working directory
|
| 4 |
+
WORKDIR /app
|
| 5 |
+
|
| 6 |
+
# Install system dependencies including ffmpeg
|
| 7 |
+
RUN apt-get update && apt-get install -y \
|
| 8 |
+
ffmpeg \
|
| 9 |
+
libsm6 \
|
| 10 |
+
libxext6 \
|
| 11 |
+
libxrender-dev \
|
| 12 |
+
libgomp1 \
|
| 13 |
+
libglib2.0-0 \
|
| 14 |
+
&& rm -rf /var/lib/apt/lists/*
|
| 15 |
+
|
| 16 |
+
# Copy requirements first for better caching
|
| 17 |
+
COPY requirements.txt .
|
| 18 |
+
|
| 19 |
+
# Install Python dependencies
|
| 20 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
| 21 |
+
|
| 22 |
+
# Copy application files
|
| 23 |
+
COPY . .
|
| 24 |
+
|
| 25 |
+
# Create necessary directories
|
| 26 |
+
RUN mkdir -p audio temp
|
| 27 |
+
|
| 28 |
+
# Expose port for FastAPI
|
| 29 |
+
EXPOSE 8000
|
| 30 |
+
|
| 31 |
+
# Run the FastAPI application
|
| 32 |
+
CMD ["uvicorn", "link2:app", "--host", "0.0.0.0", "--port", "8000"]
|
agent.py
ADDED
|
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from langchain_core.runnables import RunnablePassthrough
|
| 2 |
+
from langchain_core.output_parsers import PydanticOutputParser
|
| 3 |
+
from langchain_core.prompts import ChatPromptTemplate
|
| 4 |
+
from dotenv import load_dotenv
|
| 5 |
+
from custom_wrapper import OpenRouterChat
|
| 6 |
+
from pydantic import BaseModel, Field
|
| 7 |
+
from typing import List
|
| 8 |
+
import os
|
| 9 |
+
import json
|
| 10 |
+
import cv2
|
| 11 |
+
import base64
|
| 12 |
+
from PIL import Image
|
| 13 |
+
import io
|
| 14 |
+
|
| 15 |
+
load_dotenv()
|
| 16 |
+
OPENROUTER_API_KEY = os.getenv("OPENROUTER_API_KEY")
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
class AudioSuggestionOutput(BaseModel):
|
| 20 |
+
audio_suggestions: List[str] = Field(default_factory=list, description="Suggested audio names for footsteps")
|
| 21 |
+
environment_description: str = Field(description="Description of the environment and ground surface")
|
| 22 |
+
reasoning: str = Field(description="Explanation for the audio suggestions")
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
llm = OpenRouterChat(
|
| 26 |
+
api_key=OPENROUTER_API_KEY,
|
| 27 |
+
model="meta-llama/llama-3.2-90b-vision-instruct",
|
| 28 |
+
temperature=0.7,
|
| 29 |
+
max_tokens=1024
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
parser = PydanticOutputParser(pydantic_object=AudioSuggestionOutput)
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def extract_first_frame(video_path):
|
| 36 |
+
"""Extract the first frame from a video file"""
|
| 37 |
+
try:
|
| 38 |
+
cap = cv2.VideoCapture(video_path)
|
| 39 |
+
if not cap.isOpened():
|
| 40 |
+
raise ValueError(f"Cannot open video file: {video_path}")
|
| 41 |
+
|
| 42 |
+
success, frame = cap.read()
|
| 43 |
+
cap.release()
|
| 44 |
+
|
| 45 |
+
if not success:
|
| 46 |
+
raise ValueError("Cannot read the first frame from video")
|
| 47 |
+
|
| 48 |
+
return frame
|
| 49 |
+
except Exception as e:
|
| 50 |
+
print(f"Error extracting first frame: {e}")
|
| 51 |
+
return None
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def image_to_base64(image):
|
| 55 |
+
"""Convert OpenCV image to base64 string"""
|
| 56 |
+
try:
|
| 57 |
+
# Convert BGR to RGB
|
| 58 |
+
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 59 |
+
|
| 60 |
+
# Convert to PIL Image
|
| 61 |
+
pil_image = Image.fromarray(image_rgb)
|
| 62 |
+
|
| 63 |
+
# Convert to base64
|
| 64 |
+
buffered = io.BytesIO()
|
| 65 |
+
pil_image.save(buffered, format="JPEG", quality=85)
|
| 66 |
+
img_str = base64.b64encode(buffered.getvalue()).decode()
|
| 67 |
+
|
| 68 |
+
return img_str
|
| 69 |
+
except Exception as e:
|
| 70 |
+
print(f"Error converting image to base64: {e}")
|
| 71 |
+
return None
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
prompt = ChatPromptTemplate.from_template("""
|
| 75 |
+
You are an expert sound designer and environmental analyst.
|
| 76 |
+
Analyze the provided image and suggest appropriate audio names for footsteps based on the environment, ground surface, and surroundings.
|
| 77 |
+
|
| 78 |
+
Image Data: {image_data}
|
| 79 |
+
|
| 80 |
+
Please analyze:
|
| 81 |
+
1. The type of ground/surface (concrete, grass, wood, carpet, gravel, etc.)
|
| 82 |
+
2. The environment (indoor, outdoor, urban, natural, etc.)
|
| 83 |
+
3. Weather conditions if visible (wet, dry, snowy, etc.)
|
| 84 |
+
4. Any other relevant factors that would affect footstep sounds
|
| 85 |
+
5. Audio suggestion's name must be friendly for a youtube search
|
| 86 |
+
6. Name without extensions
|
| 87 |
+
|
| 88 |
+
Provide 3-5 specific, descriptive audio file name suggestions for footsteps in this environment.
|
| 89 |
+
The names should be clear, concise, and follow standard audio naming conventions.
|
| 90 |
+
|
| 91 |
+
{format_instructions}
|
| 92 |
+
""")
|
| 93 |
+
|
| 94 |
+
chain = (
|
| 95 |
+
{"image_data": RunnablePassthrough(), "format_instructions": lambda x: parser.get_format_instructions()}
|
| 96 |
+
| prompt
|
| 97 |
+
| llm
|
| 98 |
+
| parser
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def analyze_image_and_suggest_audio(image_base64):
|
| 103 |
+
"""Analyze the image and suggest audio names for footsteps"""
|
| 104 |
+
try:
|
| 105 |
+
result = chain.invoke(image_base64)
|
| 106 |
+
return result.dict()
|
| 107 |
+
except Exception as e:
|
| 108 |
+
print("Error during image analysis:", e)
|
| 109 |
+
return None
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
def process_video_for_footstep_audio(video_path):
|
| 113 |
+
# Extract first frame from video
|
| 114 |
+
print("Extracting first frame from video...")
|
| 115 |
+
first_frame = extract_first_frame(video_path)
|
| 116 |
+
|
| 117 |
+
if first_frame is None:
|
| 118 |
+
return {"error": "Failed to extract first frame from video"}
|
| 119 |
+
|
| 120 |
+
# Convert image to base64
|
| 121 |
+
print("Converting image to base64...")
|
| 122 |
+
image_base64 = image_to_base64(first_frame)
|
| 123 |
+
|
| 124 |
+
if image_base64 is None:
|
| 125 |
+
return {"error": "Failed to convert image to base64"}
|
| 126 |
+
|
| 127 |
+
# Analyze image and get audio suggestions
|
| 128 |
+
print("Analyzing image and generating audio suggestions...")
|
| 129 |
+
result = analyze_image_and_suggest_audio(image_base64)
|
| 130 |
+
|
| 131 |
+
# Save results
|
| 132 |
+
if result:
|
| 133 |
+
output_file = "found_img1/gemini2.json"
|
| 134 |
+
os.makedirs(os.path.dirname(output_file), exist_ok=True)
|
| 135 |
+
|
| 136 |
+
with open(output_file, "w") as f:
|
| 137 |
+
json.dump(result, f, indent=2)
|
| 138 |
+
|
| 139 |
+
print(f"Results saved to {output_file}")
|
| 140 |
+
|
| 141 |
+
return result['audio_suggestions'][0]
|
| 142 |
+
|
| 143 |
+
|
custom_wrapper.py
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import requests
|
| 2 |
+
from typing import List, Optional
|
| 3 |
+
from langchain_core.messages import AIMessage, BaseMessage, HumanMessage
|
| 4 |
+
from langchain_core.outputs import ChatResult, ChatGeneration
|
| 5 |
+
from langchain_core.language_models import BaseChatModel
|
| 6 |
+
from pydantic import BaseModel, Field
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class OpenRouterChat(BaseChatModel):
|
| 10 |
+
api_key: str = Field(...)
|
| 11 |
+
model: str = "mistralai/mistral-7b-instruct:free"
|
| 12 |
+
temperature: float = 0.7
|
| 13 |
+
|
| 14 |
+
@property
|
| 15 |
+
def _llm_type(self) -> str:
|
| 16 |
+
return "openrouter-chat"
|
| 17 |
+
|
| 18 |
+
def _format_message(self, message: BaseMessage) -> dict:
|
| 19 |
+
role = "user"
|
| 20 |
+
if isinstance(message, HumanMessage):
|
| 21 |
+
role = "user"
|
| 22 |
+
elif isinstance(message, AIMessage):
|
| 23 |
+
role = "assistant"
|
| 24 |
+
else:
|
| 25 |
+
raise ValueError(f"Unsupported message type: {type(message)}")
|
| 26 |
+
return {"role": role, "content": message.content}
|
| 27 |
+
|
| 28 |
+
def _generate(self, messages: List[BaseMessage], stop: Optional[List[str]] = None) -> ChatResult:
|
| 29 |
+
headers = {
|
| 30 |
+
"Authorization": f"Bearer {self.api_key}",
|
| 31 |
+
"Content-Type": "application/json",
|
| 32 |
+
"HTTP-Referer": "https://yourdomain.com",
|
| 33 |
+
"X-Title": "LangChainOpenRouterWrapper"
|
| 34 |
+
}
|
| 35 |
+
|
| 36 |
+
payload = {
|
| 37 |
+
"model": self.model,
|
| 38 |
+
"messages": [self._format_message(m) for m in messages],
|
| 39 |
+
"temperature": self.temperature
|
| 40 |
+
}
|
| 41 |
+
|
| 42 |
+
response = requests.post(
|
| 43 |
+
"https://openrouter.ai/api/v1/chat/completions",
|
| 44 |
+
headers=headers,
|
| 45 |
+
json=payload,
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
if response.status_code != 200:
|
| 49 |
+
raise Exception(f"OpenRouter API error {response.status_code}: {response.text}")
|
| 50 |
+
|
| 51 |
+
content = response.json()["choices"][0]["message"]["content"]
|
| 52 |
+
|
| 53 |
+
return ChatResult(
|
| 54 |
+
generations=[ChatGeneration(message=AIMessage(content=content))]
|
| 55 |
+
)
|
link.py
ADDED
|
@@ -0,0 +1,669 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI, File, UploadFile, HTTPException, BackgroundTasks
|
| 2 |
+
from fastapi.responses import FileResponse, JSONResponse, StreamingResponse
|
| 3 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 4 |
+
from pydantic import BaseModel
|
| 5 |
+
from typing import Optional, List, Dict, Any
|
| 6 |
+
import cv2
|
| 7 |
+
import numpy as np
|
| 8 |
+
import mediapipe as mp
|
| 9 |
+
from pathlib import Path
|
| 10 |
+
import json
|
| 11 |
+
import subprocess
|
| 12 |
+
import os
|
| 13 |
+
import soundfile as sf
|
| 14 |
+
from datetime import datetime
|
| 15 |
+
import tempfile
|
| 16 |
+
import pandas as pd
|
| 17 |
+
import shutil
|
| 18 |
+
import asyncio
|
| 19 |
+
from concurrent.futures import ThreadPoolExecutor
|
| 20 |
+
import base64
|
| 21 |
+
from io import BytesIO
|
| 22 |
+
|
| 23 |
+
# Suppress warnings
|
| 24 |
+
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
| 25 |
+
import absl.logging
|
| 26 |
+
|
| 27 |
+
absl.logging.set_verbosity(absl.logging.ERROR)
|
| 28 |
+
|
| 29 |
+
# Mock streamlit before importing real.py
|
| 30 |
+
import sys
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
class MockStreamlit:
|
| 34 |
+
def __getattr__(self, name):
|
| 35 |
+
def mock_func(*args, **kwargs):
|
| 36 |
+
pass
|
| 37 |
+
|
| 38 |
+
return mock_func
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
sys.modules['streamlit'] = MockStreamlit()
|
| 42 |
+
|
| 43 |
+
# Import working classes and functions from real.py
|
| 44 |
+
from reel import (
|
| 45 |
+
HybridFootstepDetectionPipeline,
|
| 46 |
+
PersonTracker,
|
| 47 |
+
AudioGenerator,
|
| 48 |
+
create_annotated_video,
|
| 49 |
+
merge_audio_with_video
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
# Import your custom modules
|
| 53 |
+
from agent import process_video_for_footstep_audio
|
| 54 |
+
from sound_agent import main_sound
|
| 55 |
+
from qsec import extract_second_audio_librosa
|
| 56 |
+
|
| 57 |
+
app = FastAPI(title="Footstep Detection API", version="1.0.0")
|
| 58 |
+
|
| 59 |
+
# CORS middleware
|
| 60 |
+
app.add_middleware(
|
| 61 |
+
CORSMiddleware,
|
| 62 |
+
allow_origins=["*"],
|
| 63 |
+
allow_credentials=True,
|
| 64 |
+
allow_methods=["*"],
|
| 65 |
+
allow_headers=["*"],
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
# Thread pool for CPU-intensive tasks
|
| 69 |
+
executor = ThreadPoolExecutor(max_workers=4)
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
# ==================== Pydantic Models ====================
|
| 73 |
+
|
| 74 |
+
class ProcessingConfig(BaseModel):
|
| 75 |
+
sensitivity: str = "medium"
|
| 76 |
+
yolo_conf: float = 0.5
|
| 77 |
+
use_hybrid: bool = True
|
| 78 |
+
create_annotated: bool = True
|
| 79 |
+
add_audio: bool = True
|
| 80 |
+
surface_type: str = "concrete"
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
class FootstepEvent(BaseModel):
|
| 84 |
+
frame: int
|
| 85 |
+
timecode: str
|
| 86 |
+
foot: str
|
| 87 |
+
event: str
|
| 88 |
+
time_seconds: float
|
| 89 |
+
confidence: float
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
class ProcessingResult(BaseModel):
|
| 93 |
+
task_id: str
|
| 94 |
+
status: str
|
| 95 |
+
progress: float
|
| 96 |
+
events: Optional[List[FootstepEvent]] = None
|
| 97 |
+
total_frames: Optional[int] = None
|
| 98 |
+
fps: Optional[float] = None
|
| 99 |
+
detection_stats: Optional[Dict[str, Any]] = None
|
| 100 |
+
error: Optional[str] = None
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
class LiveDetectionConfig(BaseModel):
|
| 104 |
+
sensitivity: str = "medium"
|
| 105 |
+
yolo_conf: float = 0.5
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
# ==================== Storage ====================
|
| 109 |
+
|
| 110 |
+
# In-memory storage for tasks
|
| 111 |
+
tasks_storage = {}
|
| 112 |
+
video_storage = {}
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
def get_ffmpeg_path():
|
| 116 |
+
"""Get FFmpeg path"""
|
| 117 |
+
possible_paths = [
|
| 118 |
+
"ffmpeg", # Try system ffmpeg first (Docker/Linux)
|
| 119 |
+
r"C:\Users\abhiv\OneDrive\Desktop\agentic ai\SoundFeet\ffmpeg-7.1-essentials_build\bin\ffmpeg.exe", # Local Windows
|
| 120 |
+
"./ffmpeg-7.1-essentials_build/bin/ffmpeg.exe", # Relative path
|
| 121 |
+
]
|
| 122 |
+
|
| 123 |
+
for path in possible_paths:
|
| 124 |
+
if path == "ffmpeg":
|
| 125 |
+
try:
|
| 126 |
+
result = subprocess.run([path, '-version'], capture_output=True, timeout=5)
|
| 127 |
+
if result.returncode == 0:
|
| 128 |
+
return path
|
| 129 |
+
except:
|
| 130 |
+
continue
|
| 131 |
+
else:
|
| 132 |
+
if os.path.exists(path):
|
| 133 |
+
return path
|
| 134 |
+
return None
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
FFMPEG_PATH = get_ffmpeg_path()
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
# ==================== API Endpoints ====================
|
| 141 |
+
|
| 142 |
+
@app.get("/")
|
| 143 |
+
async def root():
|
| 144 |
+
return {"message": "Footstep Detection API", "version": "1.0.0"}
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
@app.post("/api/upload-video")
|
| 148 |
+
async def upload_video(
|
| 149 |
+
file: UploadFile = File(...),
|
| 150 |
+
config: Optional[str] = None
|
| 151 |
+
):
|
| 152 |
+
"""Upload video and create task"""
|
| 153 |
+
if not file.content_type.startswith('video/'):
|
| 154 |
+
raise HTTPException(status_code=400, detail="File must be a video")
|
| 155 |
+
|
| 156 |
+
# Generate task ID
|
| 157 |
+
task_id = f"task_{datetime.now().strftime('%Y%m%d_%H%M%S')}_{os.urandom(4).hex()}"
|
| 158 |
+
|
| 159 |
+
# Save video to temp file
|
| 160 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
|
| 161 |
+
content = await file.read()
|
| 162 |
+
temp_file.write(content)
|
| 163 |
+
temp_file.close()
|
| 164 |
+
|
| 165 |
+
# Parse config
|
| 166 |
+
if config:
|
| 167 |
+
try:
|
| 168 |
+
config_dict = json.loads(config)
|
| 169 |
+
except:
|
| 170 |
+
config_dict = {}
|
| 171 |
+
else:
|
| 172 |
+
config_dict = {}
|
| 173 |
+
|
| 174 |
+
processing_config = ProcessingConfig(**config_dict)
|
| 175 |
+
|
| 176 |
+
# Create task
|
| 177 |
+
tasks_storage[task_id] = {
|
| 178 |
+
'task_id': task_id,
|
| 179 |
+
'status': 'uploaded',
|
| 180 |
+
'progress': 0.0,
|
| 181 |
+
'video_path': temp_file.name,
|
| 182 |
+
'config': processing_config.dict(),
|
| 183 |
+
'created_at': datetime.now().isoformat()
|
| 184 |
+
}
|
| 185 |
+
|
| 186 |
+
return {
|
| 187 |
+
"task_id": task_id,
|
| 188 |
+
"status": "uploaded",
|
| 189 |
+
"message": "Video uploaded successfully"
|
| 190 |
+
}
|
| 191 |
+
|
| 192 |
+
|
| 193 |
+
@app.post("/api/process/{task_id}")
|
| 194 |
+
async def process_video(task_id: str, background_tasks: BackgroundTasks):
|
| 195 |
+
"""Start processing video"""
|
| 196 |
+
if task_id not in tasks_storage:
|
| 197 |
+
raise HTTPException(status_code=404, detail="Task not found")
|
| 198 |
+
|
| 199 |
+
task = tasks_storage[task_id]
|
| 200 |
+
|
| 201 |
+
if task['status'] == 'processing':
|
| 202 |
+
return {"message": "Task is already being processed"}
|
| 203 |
+
|
| 204 |
+
task['status'] = 'processing'
|
| 205 |
+
task['progress'] = 0.0
|
| 206 |
+
|
| 207 |
+
background_tasks.add_task(process_video_task, task_id)
|
| 208 |
+
|
| 209 |
+
return {
|
| 210 |
+
"task_id": task_id,
|
| 211 |
+
"status": "processing",
|
| 212 |
+
"message": "Video processing started"
|
| 213 |
+
}
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
def process_video_task(task_id: str):
|
| 217 |
+
"""Background task for video processing"""
|
| 218 |
+
try:
|
| 219 |
+
task = tasks_storage[task_id]
|
| 220 |
+
config = task['config']
|
| 221 |
+
video_path = task['video_path']
|
| 222 |
+
|
| 223 |
+
# Get video info first
|
| 224 |
+
cap = cv2.VideoCapture(video_path)
|
| 225 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 226 |
+
cap.release()
|
| 227 |
+
|
| 228 |
+
# Initialize pipeline using real.py's class
|
| 229 |
+
pipeline = HybridFootstepDetectionPipeline(
|
| 230 |
+
fps=fps,
|
| 231 |
+
sensitivity=config['sensitivity'],
|
| 232 |
+
yolo_conf=config['yolo_conf']
|
| 233 |
+
)
|
| 234 |
+
|
| 235 |
+
# Process video using real.py's method
|
| 236 |
+
def progress_callback(progress):
|
| 237 |
+
task['progress'] = progress
|
| 238 |
+
|
| 239 |
+
results = pipeline.process_video(video_path, progress_callback)
|
| 240 |
+
|
| 241 |
+
# Update task
|
| 242 |
+
task['status'] = 'completed'
|
| 243 |
+
task['progress'] = 1.0
|
| 244 |
+
task['results'] = results
|
| 245 |
+
task['completed_at'] = datetime.now().isoformat()
|
| 246 |
+
|
| 247 |
+
except Exception as e:
|
| 248 |
+
task['status'] = 'failed'
|
| 249 |
+
task['error'] = str(e)
|
| 250 |
+
task['failed_at'] = datetime.now().isoformat()
|
| 251 |
+
|
| 252 |
+
|
| 253 |
+
@app.get("/api/status/{task_id}")
|
| 254 |
+
async def get_task_status(task_id: str):
|
| 255 |
+
"""Get task status and progress"""
|
| 256 |
+
if task_id not in tasks_storage:
|
| 257 |
+
raise HTTPException(status_code=404, detail="Task not found")
|
| 258 |
+
|
| 259 |
+
task = tasks_storage[task_id]
|
| 260 |
+
|
| 261 |
+
response = {
|
| 262 |
+
"task_id": task_id,
|
| 263 |
+
"status": task['status'],
|
| 264 |
+
"progress": task['progress']
|
| 265 |
+
}
|
| 266 |
+
|
| 267 |
+
if task['status'] == 'completed' and 'results' in task:
|
| 268 |
+
response['results'] = task['results']
|
| 269 |
+
elif task['status'] == 'failed':
|
| 270 |
+
response['error'] = task.get('error')
|
| 271 |
+
|
| 272 |
+
return response
|
| 273 |
+
|
| 274 |
+
|
| 275 |
+
@app.post("/api/generate-video/{task_id}")
|
| 276 |
+
async def generate_video(task_id: str, background_tasks: BackgroundTasks):
|
| 277 |
+
"""Generate annotated video"""
|
| 278 |
+
if task_id not in tasks_storage:
|
| 279 |
+
raise HTTPException(status_code=404, detail="Task not found")
|
| 280 |
+
|
| 281 |
+
task = tasks_storage[task_id]
|
| 282 |
+
|
| 283 |
+
if task['status'] != 'completed':
|
| 284 |
+
raise HTTPException(status_code=400, detail="Processing not completed")
|
| 285 |
+
|
| 286 |
+
if not task.get('results'):
|
| 287 |
+
raise HTTPException(status_code=400, detail="No results available")
|
| 288 |
+
|
| 289 |
+
background_tasks.add_task(generate_video_task, task_id)
|
| 290 |
+
|
| 291 |
+
return {
|
| 292 |
+
"task_id": task_id,
|
| 293 |
+
"message": "Video generation started"
|
| 294 |
+
}
|
| 295 |
+
|
| 296 |
+
|
| 297 |
+
def generate_video_task(task_id: str):
|
| 298 |
+
"""Background task for video generation using real.py's create_annotated_video"""
|
| 299 |
+
try:
|
| 300 |
+
print(f"[DEBUG] Starting video generation for {task_id}")
|
| 301 |
+
task = tasks_storage[task_id]
|
| 302 |
+
results = task['results']
|
| 303 |
+
video_path = task['video_path']
|
| 304 |
+
config = task['config']
|
| 305 |
+
|
| 306 |
+
task['video_generating'] = True
|
| 307 |
+
task['video_ready'] = False
|
| 308 |
+
|
| 309 |
+
print(f"[DEBUG] Creating annotated video for {task_id}")
|
| 310 |
+
|
| 311 |
+
# Generate output path
|
| 312 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='_annotated.mp4')
|
| 313 |
+
annotated_path = temp_file.name
|
| 314 |
+
temp_file.close()
|
| 315 |
+
|
| 316 |
+
print(f"[DEBUG] Output video path: {annotated_path}")
|
| 317 |
+
print(f"[DEBUG] Input video path: {video_path}")
|
| 318 |
+
|
| 319 |
+
# Use real.py's create_annotated_video function
|
| 320 |
+
def progress_callback(progress):
|
| 321 |
+
task['video_progress'] = progress
|
| 322 |
+
if int(progress * 100) % 10 == 0:
|
| 323 |
+
print(f"[DEBUG] Video generation progress: {progress * 100:.1f}%")
|
| 324 |
+
|
| 325 |
+
success = create_annotated_video(
|
| 326 |
+
input_path=video_path,
|
| 327 |
+
events=results['events'],
|
| 328 |
+
output_path=annotated_path,
|
| 329 |
+
use_hybrid=config.get('use_hybrid', True),
|
| 330 |
+
progress_callback=progress_callback
|
| 331 |
+
)
|
| 332 |
+
|
| 333 |
+
if not success:
|
| 334 |
+
raise Exception("Video annotation failed")
|
| 335 |
+
|
| 336 |
+
# Verify the file was created
|
| 337 |
+
if not os.path.exists(annotated_path):
|
| 338 |
+
raise Exception(f"Annotated video file was not created at {annotated_path}")
|
| 339 |
+
|
| 340 |
+
file_size = os.path.getsize(annotated_path)
|
| 341 |
+
print(f"[DEBUG] Annotated video file size: {file_size} bytes")
|
| 342 |
+
|
| 343 |
+
if file_size == 0:
|
| 344 |
+
raise Exception("Annotated video file is empty")
|
| 345 |
+
|
| 346 |
+
# Update task
|
| 347 |
+
task['annotated_video'] = annotated_path
|
| 348 |
+
task['video_ready'] = True
|
| 349 |
+
task['video_generating'] = False
|
| 350 |
+
task['video_progress'] = 1.0
|
| 351 |
+
|
| 352 |
+
print(f"[DEBUG] Video generation completed for {task_id}")
|
| 353 |
+
print(f"[DEBUG] Video file exists: {os.path.exists(annotated_path)}")
|
| 354 |
+
|
| 355 |
+
except Exception as e:
|
| 356 |
+
print(f"[ERROR] Video generation failed for {task_id}: {str(e)}")
|
| 357 |
+
import traceback
|
| 358 |
+
traceback.print_exc()
|
| 359 |
+
task['video_error'] = str(e)
|
| 360 |
+
task['video_ready'] = False
|
| 361 |
+
task['video_generating'] = False
|
| 362 |
+
|
| 363 |
+
|
| 364 |
+
@app.get("/api/video-status/{task_id}")
|
| 365 |
+
async def get_video_status(task_id: str):
|
| 366 |
+
"""Check if video is ready for download"""
|
| 367 |
+
if task_id not in tasks_storage:
|
| 368 |
+
raise HTTPException(status_code=404, detail="Task not found")
|
| 369 |
+
|
| 370 |
+
task = tasks_storage[task_id]
|
| 371 |
+
|
| 372 |
+
return {
|
| 373 |
+
"task_id": task_id,
|
| 374 |
+
"video_ready": task.get('video_ready', False),
|
| 375 |
+
"video_generating": task.get('video_generating', False),
|
| 376 |
+
"video_progress": task.get('video_progress', 0.0),
|
| 377 |
+
"video_error": task.get('video_error', None)
|
| 378 |
+
}
|
| 379 |
+
|
| 380 |
+
|
| 381 |
+
@app.get("/api/download-video/{task_id}")
|
| 382 |
+
async def download_video(task_id: str):
|
| 383 |
+
"""Download annotated video"""
|
| 384 |
+
if task_id not in tasks_storage:
|
| 385 |
+
raise HTTPException(status_code=404, detail="Task not found")
|
| 386 |
+
|
| 387 |
+
task = tasks_storage[task_id]
|
| 388 |
+
|
| 389 |
+
print(f"[DEBUG] Download request for {task_id}")
|
| 390 |
+
print(f"[DEBUG] Video ready: {task.get('video_ready')}")
|
| 391 |
+
print(f"[DEBUG] Annotated video path: {task.get('annotated_video')}")
|
| 392 |
+
|
| 393 |
+
if not task.get('video_ready'):
|
| 394 |
+
raise HTTPException(status_code=400, detail="Video not ready")
|
| 395 |
+
|
| 396 |
+
video_path = task.get('annotated_video')
|
| 397 |
+
|
| 398 |
+
if not video_path:
|
| 399 |
+
raise HTTPException(status_code=404, detail="Video path not set")
|
| 400 |
+
|
| 401 |
+
if not os.path.exists(video_path):
|
| 402 |
+
raise HTTPException(status_code=404, detail=f"Video file not found at {video_path}")
|
| 403 |
+
|
| 404 |
+
return FileResponse(
|
| 405 |
+
video_path,
|
| 406 |
+
media_type="video/mp4",
|
| 407 |
+
filename=f"annotated_{task_id}.mp4"
|
| 408 |
+
)
|
| 409 |
+
|
| 410 |
+
|
| 411 |
+
@app.get("/api/export-csv/{task_id}")
|
| 412 |
+
async def export_csv(task_id: str):
|
| 413 |
+
"""Export results as CSV"""
|
| 414 |
+
if task_id not in tasks_storage:
|
| 415 |
+
raise HTTPException(status_code=404, detail="Task not found")
|
| 416 |
+
|
| 417 |
+
task = tasks_storage[task_id]
|
| 418 |
+
|
| 419 |
+
if task['status'] != 'completed' or 'results' not in task:
|
| 420 |
+
raise HTTPException(status_code=400, detail="No results available")
|
| 421 |
+
|
| 422 |
+
events = task['results']['events']
|
| 423 |
+
df = pd.DataFrame(events)
|
| 424 |
+
|
| 425 |
+
csv_buffer = BytesIO()
|
| 426 |
+
df.to_csv(csv_buffer, index=False)
|
| 427 |
+
csv_buffer.seek(0)
|
| 428 |
+
|
| 429 |
+
return StreamingResponse(
|
| 430 |
+
csv_buffer,
|
| 431 |
+
media_type="text/csv",
|
| 432 |
+
headers={"Content-Disposition": f"attachment; filename=footsteps_{task_id}.csv"}
|
| 433 |
+
)
|
| 434 |
+
|
| 435 |
+
|
| 436 |
+
@app.get("/api/export-json/{task_id}")
|
| 437 |
+
async def export_json(task_id: str):
|
| 438 |
+
"""Export results as JSON"""
|
| 439 |
+
if task_id not in tasks_storage:
|
| 440 |
+
raise HTTPException(status_code=404, detail="Task not found")
|
| 441 |
+
|
| 442 |
+
task = tasks_storage[task_id]
|
| 443 |
+
|
| 444 |
+
if task['status'] != 'completed' or 'results' not in task:
|
| 445 |
+
raise HTTPException(status_code=400, detail="No results available")
|
| 446 |
+
|
| 447 |
+
return JSONResponse(content=task['results'])
|
| 448 |
+
|
| 449 |
+
|
| 450 |
+
@app.post("/api/generate-audio-video/{task_id}")
|
| 451 |
+
async def generate_audio_video(task_id: str, background_tasks: BackgroundTasks):
|
| 452 |
+
"""Generate annotated video with footstep audio"""
|
| 453 |
+
if task_id not in tasks_storage:
|
| 454 |
+
raise HTTPException(status_code=404, detail="Task not found")
|
| 455 |
+
|
| 456 |
+
task = tasks_storage[task_id]
|
| 457 |
+
|
| 458 |
+
if task['status'] != 'completed':
|
| 459 |
+
raise HTTPException(status_code=400, detail="Processing not completed")
|
| 460 |
+
|
| 461 |
+
if not task.get('results'):
|
| 462 |
+
raise HTTPException(status_code=400, detail="No results available")
|
| 463 |
+
|
| 464 |
+
background_tasks.add_task(generate_audio_video_task, task_id)
|
| 465 |
+
|
| 466 |
+
return {
|
| 467 |
+
"task_id": task_id,
|
| 468 |
+
"message": "Audio video generation started"
|
| 469 |
+
}
|
| 470 |
+
|
| 471 |
+
|
| 472 |
+
def generate_audio_video_task(task_id: str):
|
| 473 |
+
"""Background task for generating video with audio using real.py's functions"""
|
| 474 |
+
try:
|
| 475 |
+
print(f"[DEBUG] Starting audio video generation for {task_id}")
|
| 476 |
+
task = tasks_storage[task_id]
|
| 477 |
+
results = task['results']
|
| 478 |
+
video_path = task['video_path']
|
| 479 |
+
config = task['config']
|
| 480 |
+
|
| 481 |
+
task['audio_video_generating'] = True
|
| 482 |
+
task['audio_video_ready'] = False
|
| 483 |
+
|
| 484 |
+
# Step 1: Generate audio track
|
| 485 |
+
print(f"[DEBUG] Generating audio track...")
|
| 486 |
+
audio_gen = AudioGenerator()
|
| 487 |
+
|
| 488 |
+
# Get audio file for surface type
|
| 489 |
+
'''surface_type = config.get('surface_type', 'concrete')
|
| 490 |
+
aud_name = process_video_for_footstep_audio(str(video_path))
|
| 491 |
+
aud_path = main_sound(aud_name)
|
| 492 |
+
aud_path = aud_path['default'].replace(".%(ext)s", ".mp3")'''
|
| 493 |
+
|
| 494 |
+
aud_path="audio/Footsteps on Gravel Path Outdoor.mp3"
|
| 495 |
+
|
| 496 |
+
duration = results['total_frames'] / results['fps']
|
| 497 |
+
audio_track = audio_gen.create_audio_track(
|
| 498 |
+
results['events'],
|
| 499 |
+
aud_path,
|
| 500 |
+
duration
|
| 501 |
+
)
|
| 502 |
+
|
| 503 |
+
task['audio_video_progress'] = 0.3
|
| 504 |
+
|
| 505 |
+
# Step 2: Create annotated video
|
| 506 |
+
print(f"[DEBUG] Creating annotated video...")
|
| 507 |
+
temp_video = tempfile.NamedTemporaryFile(delete=False, suffix='_temp.mp4')
|
| 508 |
+
temp_video_path = temp_video.name
|
| 509 |
+
temp_video.close()
|
| 510 |
+
|
| 511 |
+
def video_progress(progress):
|
| 512 |
+
task['audio_video_progress'] = 0.3 + (progress * 0.4) # 30-70%
|
| 513 |
+
|
| 514 |
+
success = create_annotated_video(
|
| 515 |
+
input_path=video_path,
|
| 516 |
+
events=results['events'],
|
| 517 |
+
output_path=temp_video_path,
|
| 518 |
+
use_hybrid=config.get('use_hybrid', True),
|
| 519 |
+
progress_callback=video_progress
|
| 520 |
+
)
|
| 521 |
+
|
| 522 |
+
if not success:
|
| 523 |
+
raise Exception("Video annotation failed")
|
| 524 |
+
|
| 525 |
+
task['audio_video_progress'] = 0.7
|
| 526 |
+
|
| 527 |
+
# Step 3: Merge audio with video
|
| 528 |
+
print(f"[DEBUG] Merging audio with video...")
|
| 529 |
+
final_output = tempfile.NamedTemporaryFile(delete=False, suffix='_final.mp4')
|
| 530 |
+
final_output_path = final_output.name
|
| 531 |
+
final_output.close()
|
| 532 |
+
|
| 533 |
+
merge_success = merge_audio_with_video(
|
| 534 |
+
temp_video_path,
|
| 535 |
+
audio_track,
|
| 536 |
+
44100,
|
| 537 |
+
final_output_path
|
| 538 |
+
)
|
| 539 |
+
|
| 540 |
+
if not merge_success:
|
| 541 |
+
raise Exception("Audio merge failed")
|
| 542 |
+
|
| 543 |
+
# Cleanup temp video
|
| 544 |
+
if os.path.exists(temp_video_path):
|
| 545 |
+
os.remove(temp_video_path)
|
| 546 |
+
|
| 547 |
+
# Verify final file
|
| 548 |
+
if not os.path.exists(final_output_path):
|
| 549 |
+
raise Exception(f"Final video file was not created at {final_output_path}")
|
| 550 |
+
|
| 551 |
+
file_size = os.path.getsize(final_output_path)
|
| 552 |
+
print(f"[DEBUG] Final video file size: {file_size} bytes")
|
| 553 |
+
|
| 554 |
+
if file_size == 0:
|
| 555 |
+
raise Exception("Final video file is empty")
|
| 556 |
+
|
| 557 |
+
# Update task
|
| 558 |
+
task['audio_video_path'] = final_output_path
|
| 559 |
+
task['audio_video_ready'] = True
|
| 560 |
+
task['audio_video_generating'] = False
|
| 561 |
+
task['audio_video_progress'] = 1.0
|
| 562 |
+
|
| 563 |
+
print(f"[DEBUG] Audio video generation completed for {task_id}")
|
| 564 |
+
|
| 565 |
+
except Exception as e:
|
| 566 |
+
print(f"[ERROR] Audio video generation failed for {task_id}: {str(e)}")
|
| 567 |
+
import traceback
|
| 568 |
+
traceback.print_exc()
|
| 569 |
+
task['audio_video_error'] = str(e)
|
| 570 |
+
task['audio_video_ready'] = False
|
| 571 |
+
task['audio_video_generating'] = False
|
| 572 |
+
|
| 573 |
+
|
| 574 |
+
@app.get("/api/audio-video-status/{task_id}")
|
| 575 |
+
async def get_audio_video_status(task_id: str):
|
| 576 |
+
"""Check if audio video is ready for download"""
|
| 577 |
+
if task_id not in tasks_storage:
|
| 578 |
+
raise HTTPException(status_code=404, detail="Task not found")
|
| 579 |
+
|
| 580 |
+
task = tasks_storage[task_id]
|
| 581 |
+
|
| 582 |
+
return {
|
| 583 |
+
"task_id": task_id,
|
| 584 |
+
"audio_video_ready": task.get('audio_video_ready', False),
|
| 585 |
+
"audio_video_generating": task.get('audio_video_generating', False),
|
| 586 |
+
"audio_video_progress": task.get('audio_video_progress', 0.0),
|
| 587 |
+
"audio_video_error": task.get('audio_video_error', None)
|
| 588 |
+
}
|
| 589 |
+
|
| 590 |
+
|
| 591 |
+
@app.get("/api/download-audio-video/{task_id}")
|
| 592 |
+
async def download_audio_video(task_id: str):
|
| 593 |
+
"""Download video with audio"""
|
| 594 |
+
if task_id not in tasks_storage:
|
| 595 |
+
raise HTTPException(status_code=404, detail="Task not found")
|
| 596 |
+
|
| 597 |
+
task = tasks_storage[task_id]
|
| 598 |
+
|
| 599 |
+
if not task.get('audio_video_ready'):
|
| 600 |
+
raise HTTPException(status_code=400, detail="Audio video not ready")
|
| 601 |
+
|
| 602 |
+
video_path = task.get('audio_video_path')
|
| 603 |
+
|
| 604 |
+
if not video_path:
|
| 605 |
+
raise HTTPException(status_code=404, detail="Video path not set")
|
| 606 |
+
|
| 607 |
+
if not os.path.exists(video_path):
|
| 608 |
+
raise HTTPException(status_code=404, detail=f"Video file not found at {video_path}")
|
| 609 |
+
|
| 610 |
+
return FileResponse(
|
| 611 |
+
video_path,
|
| 612 |
+
media_type="video/mp4",
|
| 613 |
+
filename=f"footsteps_with_audio_{task_id}.mp4"
|
| 614 |
+
)
|
| 615 |
+
|
| 616 |
+
|
| 617 |
+
@app.post("/api/live/capture-floor")
|
| 618 |
+
async def capture_floor_frame(file: UploadFile = File(...)):
|
| 619 |
+
"""Capture floor frame for live mode"""
|
| 620 |
+
if not file.content_type.startswith('image/'):
|
| 621 |
+
raise HTTPException(status_code=400, detail="File must be an image")
|
| 622 |
+
|
| 623 |
+
session_id = f"live_{datetime.now().strftime('%Y%m%d_%H%M%S')}_{os.urandom(4).hex()}"
|
| 624 |
+
|
| 625 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.jpg')
|
| 626 |
+
content = await file.read()
|
| 627 |
+
temp_file.write(content)
|
| 628 |
+
temp_file.close()
|
| 629 |
+
|
| 630 |
+
tasks_storage[session_id] = {
|
| 631 |
+
'type': 'live',
|
| 632 |
+
'floor_frame': temp_file.name,
|
| 633 |
+
'created_at': datetime.now().isoformat()
|
| 634 |
+
}
|
| 635 |
+
|
| 636 |
+
return {
|
| 637 |
+
"session_id": session_id,
|
| 638 |
+
"message": "Floor frame captured"
|
| 639 |
+
}
|
| 640 |
+
|
| 641 |
+
|
| 642 |
+
@app.post("/api/live/detect-frame/{session_id}")
|
| 643 |
+
async def detect_frame(session_id: str, file: UploadFile = File(...)):
|
| 644 |
+
"""Detect footsteps in a single frame"""
|
| 645 |
+
if session_id not in tasks_storage:
|
| 646 |
+
raise HTTPException(status_code=404, detail="Session not found")
|
| 647 |
+
|
| 648 |
+
if not file.content_type.startswith('image/'):
|
| 649 |
+
raise HTTPException(status_code=400, detail="File must be an image")
|
| 650 |
+
|
| 651 |
+
# Read frame
|
| 652 |
+
content = await file.read()
|
| 653 |
+
nparr = np.frombuffer(content, np.uint8)
|
| 654 |
+
frame = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
|
| 655 |
+
|
| 656 |
+
# TODO: Implement real-time detection
|
| 657 |
+
# This would use the LiveFootstepDetector class from real.py
|
| 658 |
+
|
| 659 |
+
return {
|
| 660 |
+
"session_id": session_id,
|
| 661 |
+
"detected": False,
|
| 662 |
+
"message": "Frame processed"
|
| 663 |
+
}
|
| 664 |
+
|
| 665 |
+
'''
|
| 666 |
+
if __name__ == "__main__":
|
| 667 |
+
import uvicorn
|
| 668 |
+
|
| 669 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)'''
|
link2.py
ADDED
|
@@ -0,0 +1,828 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI, File, UploadFile, HTTPException, BackgroundTasks
|
| 2 |
+
from fastapi.responses import FileResponse, JSONResponse, StreamingResponse
|
| 3 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 4 |
+
from pydantic import BaseModel
|
| 5 |
+
from typing import Optional, List, Dict, Any
|
| 6 |
+
import cv2
|
| 7 |
+
import numpy as np
|
| 8 |
+
import mediapipe as mp
|
| 9 |
+
from pathlib import Path
|
| 10 |
+
import json
|
| 11 |
+
import subprocess
|
| 12 |
+
import os
|
| 13 |
+
import soundfile as sf
|
| 14 |
+
from datetime import datetime
|
| 15 |
+
import tempfile
|
| 16 |
+
import pandas as pd
|
| 17 |
+
import shutil
|
| 18 |
+
import asyncio
|
| 19 |
+
from concurrent.futures import ThreadPoolExecutor
|
| 20 |
+
import base64
|
| 21 |
+
from io import BytesIO
|
| 22 |
+
|
| 23 |
+
# Suppress warnings
|
| 24 |
+
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
| 25 |
+
import absl.logging
|
| 26 |
+
|
| 27 |
+
absl.logging.set_verbosity(absl.logging.ERROR)
|
| 28 |
+
|
| 29 |
+
# Mock streamlit before importing real.py
|
| 30 |
+
import sys
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
class MockStreamlit:
|
| 34 |
+
def __getattr__(self, name):
|
| 35 |
+
def mock_func(*args, **kwargs):
|
| 36 |
+
pass
|
| 37 |
+
|
| 38 |
+
return mock_func
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
sys.modules['streamlit'] = MockStreamlit()
|
| 42 |
+
|
| 43 |
+
# Import working classes and functions from real.py
|
| 44 |
+
from real import (
|
| 45 |
+
HybridFootstepDetectionPipeline,
|
| 46 |
+
PersonTracker,
|
| 47 |
+
AudioGenerator,
|
| 48 |
+
LiveFootstepDetector,
|
| 49 |
+
create_annotated_video,
|
| 50 |
+
merge_audio_with_video
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
# Import your custom modules
|
| 54 |
+
from agent import process_video_for_footstep_audio
|
| 55 |
+
from sound_agent import main_sound
|
| 56 |
+
from qsec import extract_second_audio_librosa
|
| 57 |
+
|
| 58 |
+
app = FastAPI(title="Footstep Detection API", version="1.0.0")
|
| 59 |
+
|
| 60 |
+
# CORS middleware
|
| 61 |
+
app.add_middleware(
|
| 62 |
+
CORSMiddleware,
|
| 63 |
+
allow_origins=["*"],
|
| 64 |
+
allow_credentials=True,
|
| 65 |
+
allow_methods=["*"],
|
| 66 |
+
allow_headers=["*"],
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
# Thread pool for CPU-intensive tasks
|
| 70 |
+
executor = ThreadPoolExecutor(max_workers=4)
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
# ==================== Pydantic Models ====================
|
| 74 |
+
|
| 75 |
+
class ProcessingConfig(BaseModel):
|
| 76 |
+
sensitivity: str = "medium"
|
| 77 |
+
yolo_conf: float = 0.5
|
| 78 |
+
use_hybrid: bool = True
|
| 79 |
+
create_annotated: bool = True
|
| 80 |
+
add_audio: bool = True
|
| 81 |
+
surface_type: str = "concrete"
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
class FootstepEvent(BaseModel):
|
| 85 |
+
frame: int
|
| 86 |
+
timecode: str
|
| 87 |
+
foot: str
|
| 88 |
+
event: str
|
| 89 |
+
time_seconds: float
|
| 90 |
+
confidence: float
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
class ProcessingResult(BaseModel):
|
| 94 |
+
task_id: str
|
| 95 |
+
status: str
|
| 96 |
+
progress: float
|
| 97 |
+
events: Optional[List[FootstepEvent]] = None
|
| 98 |
+
total_frames: Optional[int] = None
|
| 99 |
+
fps: Optional[float] = None
|
| 100 |
+
detection_stats: Optional[Dict[str, Any]] = None
|
| 101 |
+
error: Optional[str] = None
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
class LiveDetectionConfig(BaseModel):
|
| 105 |
+
sensitivity: str = "medium"
|
| 106 |
+
yolo_conf: float = 0.5
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
# ==================== Storage ====================
|
| 110 |
+
|
| 111 |
+
# In-memory storage for tasks
|
| 112 |
+
tasks_storage = {}
|
| 113 |
+
video_storage = {}
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
def get_ffmpeg_path():
|
| 117 |
+
"""Get FFmpeg path"""
|
| 118 |
+
possible_paths = [
|
| 119 |
+
"ffmpeg", # Try system ffmpeg first (Docker/Linux)
|
| 120 |
+
r"C:\Users\abhiv\OneDrive\Desktop\agentic ai\SoundFeet\ffmpeg-7.1-essentials_build\bin\ffmpeg.exe", # Local Windows
|
| 121 |
+
"./ffmpeg-7.1-essentials_build/bin/ffmpeg.exe", # Relative path
|
| 122 |
+
]
|
| 123 |
+
|
| 124 |
+
for path in possible_paths:
|
| 125 |
+
if path == "ffmpeg":
|
| 126 |
+
try:
|
| 127 |
+
result = subprocess.run([path, '-version'], capture_output=True, timeout=5)
|
| 128 |
+
if result.returncode == 0:
|
| 129 |
+
return path
|
| 130 |
+
except:
|
| 131 |
+
continue
|
| 132 |
+
else:
|
| 133 |
+
if os.path.exists(path):
|
| 134 |
+
return path
|
| 135 |
+
return None
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
FFMPEG_PATH = get_ffmpeg_path()
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
# ==================== API Endpoints ====================
|
| 142 |
+
|
| 143 |
+
@app.get("/")
|
| 144 |
+
async def root():
|
| 145 |
+
return {"message": "Footstep Detection API", "version": "1.0.0"}
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
@app.post("/api/upload-video")
|
| 149 |
+
async def upload_video(
|
| 150 |
+
file: UploadFile = File(...),
|
| 151 |
+
config: Optional[str] = None
|
| 152 |
+
):
|
| 153 |
+
"""Upload video and create task"""
|
| 154 |
+
if not file.content_type.startswith('video/'):
|
| 155 |
+
raise HTTPException(status_code=400, detail="File must be a video")
|
| 156 |
+
|
| 157 |
+
# Generate task ID
|
| 158 |
+
task_id = f"task_{datetime.now().strftime('%Y%m%d_%H%M%S')}_{os.urandom(4).hex()}"
|
| 159 |
+
|
| 160 |
+
# Save video to temp file
|
| 161 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
|
| 162 |
+
content = await file.read()
|
| 163 |
+
temp_file.write(content)
|
| 164 |
+
temp_file.close()
|
| 165 |
+
|
| 166 |
+
# Parse config
|
| 167 |
+
if config:
|
| 168 |
+
try:
|
| 169 |
+
config_dict = json.loads(config)
|
| 170 |
+
except:
|
| 171 |
+
config_dict = {}
|
| 172 |
+
else:
|
| 173 |
+
config_dict = {}
|
| 174 |
+
|
| 175 |
+
processing_config = ProcessingConfig(**config_dict)
|
| 176 |
+
|
| 177 |
+
# Create task
|
| 178 |
+
tasks_storage[task_id] = {
|
| 179 |
+
'task_id': task_id,
|
| 180 |
+
'status': 'uploaded',
|
| 181 |
+
'progress': 0.0,
|
| 182 |
+
'video_path': temp_file.name,
|
| 183 |
+
'config': processing_config.dict(),
|
| 184 |
+
'created_at': datetime.now().isoformat()
|
| 185 |
+
}
|
| 186 |
+
|
| 187 |
+
return {
|
| 188 |
+
"task_id": task_id,
|
| 189 |
+
"status": "uploaded",
|
| 190 |
+
"message": "Video uploaded successfully"
|
| 191 |
+
}
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
@app.post("/api/process/{task_id}")
|
| 195 |
+
async def process_video(task_id: str, background_tasks: BackgroundTasks):
|
| 196 |
+
"""Start processing video"""
|
| 197 |
+
if task_id not in tasks_storage:
|
| 198 |
+
raise HTTPException(status_code=404, detail="Task not found")
|
| 199 |
+
|
| 200 |
+
task = tasks_storage[task_id]
|
| 201 |
+
|
| 202 |
+
if task['status'] == 'processing':
|
| 203 |
+
return {"message": "Task is already being processed"}
|
| 204 |
+
|
| 205 |
+
task['status'] = 'processing'
|
| 206 |
+
task['progress'] = 0.0
|
| 207 |
+
|
| 208 |
+
background_tasks.add_task(process_video_task, task_id)
|
| 209 |
+
|
| 210 |
+
return {
|
| 211 |
+
"task_id": task_id,
|
| 212 |
+
"status": "processing",
|
| 213 |
+
"message": "Video processing started"
|
| 214 |
+
}
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
def process_video_task(task_id: str):
|
| 218 |
+
"""Background task for video processing"""
|
| 219 |
+
try:
|
| 220 |
+
task = tasks_storage[task_id]
|
| 221 |
+
config = task['config']
|
| 222 |
+
video_path = task['video_path']
|
| 223 |
+
|
| 224 |
+
# Get video info first
|
| 225 |
+
cap = cv2.VideoCapture(video_path)
|
| 226 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 227 |
+
cap.release()
|
| 228 |
+
|
| 229 |
+
# Initialize pipeline using real.py's class
|
| 230 |
+
pipeline = HybridFootstepDetectionPipeline(
|
| 231 |
+
fps=fps,
|
| 232 |
+
sensitivity=config['sensitivity'],
|
| 233 |
+
yolo_conf=config['yolo_conf']
|
| 234 |
+
)
|
| 235 |
+
|
| 236 |
+
# Process video using real.py's method
|
| 237 |
+
def progress_callback(progress):
|
| 238 |
+
task['progress'] = progress
|
| 239 |
+
|
| 240 |
+
results = pipeline.process_video(video_path, progress_callback)
|
| 241 |
+
|
| 242 |
+
# Update task
|
| 243 |
+
task['status'] = 'completed'
|
| 244 |
+
task['progress'] = 1.0
|
| 245 |
+
task['results'] = results
|
| 246 |
+
task['completed_at'] = datetime.now().isoformat()
|
| 247 |
+
|
| 248 |
+
except Exception as e:
|
| 249 |
+
task['status'] = 'failed'
|
| 250 |
+
task['error'] = str(e)
|
| 251 |
+
task['failed_at'] = datetime.now().isoformat()
|
| 252 |
+
|
| 253 |
+
|
| 254 |
+
@app.get("/api/status/{task_id}")
|
| 255 |
+
async def get_task_status(task_id: str):
|
| 256 |
+
"""Get task status and progress"""
|
| 257 |
+
if task_id not in tasks_storage:
|
| 258 |
+
raise HTTPException(status_code=404, detail="Task not found")
|
| 259 |
+
|
| 260 |
+
task = tasks_storage[task_id]
|
| 261 |
+
|
| 262 |
+
response = {
|
| 263 |
+
"task_id": task_id,
|
| 264 |
+
"status": task['status'],
|
| 265 |
+
"progress": task['progress']
|
| 266 |
+
}
|
| 267 |
+
|
| 268 |
+
if task['status'] == 'completed' and 'results' in task:
|
| 269 |
+
response['results'] = task['results']
|
| 270 |
+
elif task['status'] == 'failed':
|
| 271 |
+
response['error'] = task.get('error')
|
| 272 |
+
|
| 273 |
+
return response
|
| 274 |
+
|
| 275 |
+
|
| 276 |
+
@app.post("/api/generate-video/{task_id}")
|
| 277 |
+
async def generate_video(task_id: str, background_tasks: BackgroundTasks):
|
| 278 |
+
"""Generate annotated video"""
|
| 279 |
+
if task_id not in tasks_storage:
|
| 280 |
+
raise HTTPException(status_code=404, detail="Task not found")
|
| 281 |
+
|
| 282 |
+
task = tasks_storage[task_id]
|
| 283 |
+
|
| 284 |
+
if task['status'] != 'completed':
|
| 285 |
+
raise HTTPException(status_code=400, detail="Processing not completed")
|
| 286 |
+
|
| 287 |
+
if not task.get('results'):
|
| 288 |
+
raise HTTPException(status_code=400, detail="No results available")
|
| 289 |
+
|
| 290 |
+
background_tasks.add_task(generate_video_task, task_id)
|
| 291 |
+
|
| 292 |
+
return {
|
| 293 |
+
"task_id": task_id,
|
| 294 |
+
"message": "Video generation started"
|
| 295 |
+
}
|
| 296 |
+
|
| 297 |
+
|
| 298 |
+
def generate_video_task(task_id: str):
|
| 299 |
+
"""Background task for video generation using real.py's create_annotated_video"""
|
| 300 |
+
try:
|
| 301 |
+
print(f"[DEBUG] Starting video generation for {task_id}")
|
| 302 |
+
task = tasks_storage[task_id]
|
| 303 |
+
results = task['results']
|
| 304 |
+
video_path = task['video_path']
|
| 305 |
+
config = task['config']
|
| 306 |
+
|
| 307 |
+
task['video_generating'] = True
|
| 308 |
+
task['video_ready'] = False
|
| 309 |
+
|
| 310 |
+
print(f"[DEBUG] Creating annotated video for {task_id}")
|
| 311 |
+
|
| 312 |
+
# Generate output path
|
| 313 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='_annotated.mp4')
|
| 314 |
+
annotated_path = temp_file.name
|
| 315 |
+
temp_file.close()
|
| 316 |
+
|
| 317 |
+
print(f"[DEBUG] Output video path: {annotated_path}")
|
| 318 |
+
print(f"[DEBUG] Input video path: {video_path}")
|
| 319 |
+
|
| 320 |
+
# Use real.py's create_annotated_video function
|
| 321 |
+
def progress_callback(progress):
|
| 322 |
+
task['video_progress'] = progress
|
| 323 |
+
if int(progress * 100) % 10 == 0:
|
| 324 |
+
print(f"[DEBUG] Video generation progress: {progress * 100:.1f}%")
|
| 325 |
+
|
| 326 |
+
success = create_annotated_video(
|
| 327 |
+
input_path=video_path,
|
| 328 |
+
events=results['events'],
|
| 329 |
+
output_path=annotated_path,
|
| 330 |
+
use_hybrid=config.get('use_hybrid', True),
|
| 331 |
+
progress_callback=progress_callback
|
| 332 |
+
)
|
| 333 |
+
|
| 334 |
+
if not success:
|
| 335 |
+
raise Exception("Video annotation failed")
|
| 336 |
+
|
| 337 |
+
# Verify the file was created
|
| 338 |
+
if not os.path.exists(annotated_path):
|
| 339 |
+
raise Exception(f"Annotated video file was not created at {annotated_path}")
|
| 340 |
+
|
| 341 |
+
file_size = os.path.getsize(annotated_path)
|
| 342 |
+
print(f"[DEBUG] Annotated video file size: {file_size} bytes")
|
| 343 |
+
|
| 344 |
+
if file_size == 0:
|
| 345 |
+
raise Exception("Annotated video file is empty")
|
| 346 |
+
|
| 347 |
+
# Update task
|
| 348 |
+
task['annotated_video'] = annotated_path
|
| 349 |
+
task['video_ready'] = True
|
| 350 |
+
task['video_generating'] = False
|
| 351 |
+
task['video_progress'] = 1.0
|
| 352 |
+
|
| 353 |
+
print(f"[DEBUG] Video generation completed for {task_id}")
|
| 354 |
+
print(f"[DEBUG] Video file exists: {os.path.exists(annotated_path)}")
|
| 355 |
+
|
| 356 |
+
except Exception as e:
|
| 357 |
+
print(f"[ERROR] Video generation failed for {task_id}: {str(e)}")
|
| 358 |
+
import traceback
|
| 359 |
+
traceback.print_exc()
|
| 360 |
+
task['video_error'] = str(e)
|
| 361 |
+
task['video_ready'] = False
|
| 362 |
+
task['video_generating'] = False
|
| 363 |
+
|
| 364 |
+
|
| 365 |
+
@app.get("/api/video-status/{task_id}")
|
| 366 |
+
async def get_video_status(task_id: str):
|
| 367 |
+
"""Check if video is ready for download"""
|
| 368 |
+
if task_id not in tasks_storage:
|
| 369 |
+
raise HTTPException(status_code=404, detail="Task not found")
|
| 370 |
+
|
| 371 |
+
task = tasks_storage[task_id]
|
| 372 |
+
|
| 373 |
+
return {
|
| 374 |
+
"task_id": task_id,
|
| 375 |
+
"video_ready": task.get('video_ready', False),
|
| 376 |
+
"video_generating": task.get('video_generating', False),
|
| 377 |
+
"video_progress": task.get('video_progress', 0.0),
|
| 378 |
+
"video_error": task.get('video_error', None)
|
| 379 |
+
}
|
| 380 |
+
|
| 381 |
+
|
| 382 |
+
@app.get("/api/download-video/{task_id}")
|
| 383 |
+
async def download_video(task_id: str):
|
| 384 |
+
"""Download annotated video"""
|
| 385 |
+
if task_id not in tasks_storage:
|
| 386 |
+
raise HTTPException(status_code=404, detail="Task not found")
|
| 387 |
+
|
| 388 |
+
task = tasks_storage[task_id]
|
| 389 |
+
|
| 390 |
+
print(f"[DEBUG] Download request for {task_id}")
|
| 391 |
+
print(f"[DEBUG] Video ready: {task.get('video_ready')}")
|
| 392 |
+
print(f"[DEBUG] Annotated video path: {task.get('annotated_video')}")
|
| 393 |
+
|
| 394 |
+
if not task.get('video_ready'):
|
| 395 |
+
raise HTTPException(status_code=400, detail="Video not ready")
|
| 396 |
+
|
| 397 |
+
video_path = task.get('annotated_video')
|
| 398 |
+
|
| 399 |
+
if not video_path:
|
| 400 |
+
raise HTTPException(status_code=404, detail="Video path not set")
|
| 401 |
+
|
| 402 |
+
if not os.path.exists(video_path):
|
| 403 |
+
raise HTTPException(status_code=404, detail=f"Video file not found at {video_path}")
|
| 404 |
+
|
| 405 |
+
return FileResponse(
|
| 406 |
+
video_path,
|
| 407 |
+
media_type="video/mp4",
|
| 408 |
+
filename=f"annotated_{task_id}.mp4"
|
| 409 |
+
)
|
| 410 |
+
|
| 411 |
+
|
| 412 |
+
@app.get("/api/export-csv/{task_id}")
|
| 413 |
+
async def export_csv(task_id: str):
|
| 414 |
+
"""Export results as CSV"""
|
| 415 |
+
if task_id not in tasks_storage:
|
| 416 |
+
raise HTTPException(status_code=404, detail="Task not found")
|
| 417 |
+
|
| 418 |
+
task = tasks_storage[task_id]
|
| 419 |
+
|
| 420 |
+
if task['status'] != 'completed' or 'results' not in task:
|
| 421 |
+
raise HTTPException(status_code=400, detail="No results available")
|
| 422 |
+
|
| 423 |
+
events = task['results']['events']
|
| 424 |
+
df = pd.DataFrame(events)
|
| 425 |
+
|
| 426 |
+
csv_buffer = BytesIO()
|
| 427 |
+
df.to_csv(csv_buffer, index=False)
|
| 428 |
+
csv_buffer.seek(0)
|
| 429 |
+
|
| 430 |
+
return StreamingResponse(
|
| 431 |
+
csv_buffer,
|
| 432 |
+
media_type="text/csv",
|
| 433 |
+
headers={"Content-Disposition": f"attachment; filename=footsteps_{task_id}.csv"}
|
| 434 |
+
)
|
| 435 |
+
|
| 436 |
+
|
| 437 |
+
@app.get("/api/export-json/{task_id}")
|
| 438 |
+
async def export_json(task_id: str):
|
| 439 |
+
"""Export results as JSON"""
|
| 440 |
+
if task_id not in tasks_storage:
|
| 441 |
+
raise HTTPException(status_code=404, detail="Task not found")
|
| 442 |
+
|
| 443 |
+
task = tasks_storage[task_id]
|
| 444 |
+
|
| 445 |
+
if task['status'] != 'completed' or 'results' not in task:
|
| 446 |
+
raise HTTPException(status_code=400, detail="No results available")
|
| 447 |
+
|
| 448 |
+
return JSONResponse(content=task['results'])
|
| 449 |
+
|
| 450 |
+
|
| 451 |
+
@app.post("/api/generate-audio-video/{task_id}")
|
| 452 |
+
async def generate_audio_video(task_id: str, background_tasks: BackgroundTasks):
|
| 453 |
+
"""Generate annotated video with footstep audio"""
|
| 454 |
+
if task_id not in tasks_storage:
|
| 455 |
+
raise HTTPException(status_code=404, detail="Task not found")
|
| 456 |
+
|
| 457 |
+
task = tasks_storage[task_id]
|
| 458 |
+
|
| 459 |
+
if task['status'] != 'completed':
|
| 460 |
+
raise HTTPException(status_code=400, detail="Processing not completed")
|
| 461 |
+
|
| 462 |
+
if not task.get('results'):
|
| 463 |
+
raise HTTPException(status_code=400, detail="No results available")
|
| 464 |
+
|
| 465 |
+
background_tasks.add_task(generate_audio_video_task, task_id)
|
| 466 |
+
|
| 467 |
+
return {
|
| 468 |
+
"task_id": task_id,
|
| 469 |
+
"message": "Audio video generation started"
|
| 470 |
+
}
|
| 471 |
+
|
| 472 |
+
|
| 473 |
+
def generate_audio_video_task(task_id: str):
|
| 474 |
+
"""Background task for generating video with audio using real.py's functions"""
|
| 475 |
+
try:
|
| 476 |
+
print(f"[DEBUG] Starting audio video generation for {task_id}")
|
| 477 |
+
task = tasks_storage[task_id]
|
| 478 |
+
results = task['results']
|
| 479 |
+
video_path = task['video_path']
|
| 480 |
+
config = task['config']
|
| 481 |
+
|
| 482 |
+
task['audio_video_generating'] = True
|
| 483 |
+
task['audio_video_ready'] = False
|
| 484 |
+
|
| 485 |
+
# Step 1: Generate audio track
|
| 486 |
+
print(f"[DEBUG] Generating audio track...")
|
| 487 |
+
audio_gen = AudioGenerator()
|
| 488 |
+
|
| 489 |
+
# Get audio file for surface type
|
| 490 |
+
surface_type = config.get('surface_type', 'concrete')
|
| 491 |
+
'''aud_name = process_video_for_footstep_audio(str(video_path))
|
| 492 |
+
aud_path = main_sound(aud_name)
|
| 493 |
+
aud_path = aud_path['default'].replace(".%(ext)s", ".mp3")'''
|
| 494 |
+
|
| 495 |
+
aud_path = "audio/Footsteps on Gravel Path Outdoor.mp3"
|
| 496 |
+
|
| 497 |
+
duration = results['total_frames'] / results['fps']
|
| 498 |
+
audio_track = audio_gen.create_audio_track(
|
| 499 |
+
results['events'],
|
| 500 |
+
aud_path,
|
| 501 |
+
duration
|
| 502 |
+
)
|
| 503 |
+
|
| 504 |
+
task['audio_video_progress'] = 0.3
|
| 505 |
+
|
| 506 |
+
# Step 2: Create annotated video
|
| 507 |
+
print(f"[DEBUG] Creating annotated video...")
|
| 508 |
+
temp_video = tempfile.NamedTemporaryFile(delete=False, suffix='_temp.mp4')
|
| 509 |
+
temp_video_path = temp_video.name
|
| 510 |
+
temp_video.close()
|
| 511 |
+
|
| 512 |
+
def video_progress(progress):
|
| 513 |
+
task['audio_video_progress'] = 0.3 + (progress * 0.4) # 30-70%
|
| 514 |
+
|
| 515 |
+
success = create_annotated_video(
|
| 516 |
+
input_path=video_path,
|
| 517 |
+
events=results['events'],
|
| 518 |
+
output_path=temp_video_path,
|
| 519 |
+
use_hybrid=config.get('use_hybrid', True),
|
| 520 |
+
progress_callback=video_progress
|
| 521 |
+
)
|
| 522 |
+
|
| 523 |
+
if not success:
|
| 524 |
+
raise Exception("Video annotation failed")
|
| 525 |
+
|
| 526 |
+
task['audio_video_progress'] = 0.7
|
| 527 |
+
|
| 528 |
+
# Step 3: Merge audio with video
|
| 529 |
+
print(f"[DEBUG] Merging audio with video...")
|
| 530 |
+
final_output = tempfile.NamedTemporaryFile(delete=False, suffix='_final.mp4')
|
| 531 |
+
final_output_path = final_output.name
|
| 532 |
+
final_output.close()
|
| 533 |
+
|
| 534 |
+
merge_success = merge_audio_with_video(
|
| 535 |
+
temp_video_path,
|
| 536 |
+
audio_track,
|
| 537 |
+
44100,
|
| 538 |
+
final_output_path
|
| 539 |
+
)
|
| 540 |
+
|
| 541 |
+
if not merge_success:
|
| 542 |
+
raise Exception("Audio merge failed")
|
| 543 |
+
|
| 544 |
+
# Cleanup temp video
|
| 545 |
+
if os.path.exists(temp_video_path):
|
| 546 |
+
os.remove(temp_video_path)
|
| 547 |
+
|
| 548 |
+
# Verify final file
|
| 549 |
+
if not os.path.exists(final_output_path):
|
| 550 |
+
raise Exception(f"Final video file was not created at {final_output_path}")
|
| 551 |
+
|
| 552 |
+
file_size = os.path.getsize(final_output_path)
|
| 553 |
+
print(f"[DEBUG] Final video file size: {file_size} bytes")
|
| 554 |
+
|
| 555 |
+
if file_size == 0:
|
| 556 |
+
raise Exception("Final video file is empty")
|
| 557 |
+
|
| 558 |
+
# Update task
|
| 559 |
+
task['audio_video_path'] = final_output_path
|
| 560 |
+
task['audio_video_ready'] = True
|
| 561 |
+
task['audio_video_generating'] = False
|
| 562 |
+
task['audio_video_progress'] = 1.0
|
| 563 |
+
|
| 564 |
+
print(f"[DEBUG] Audio video generation completed for {task_id}")
|
| 565 |
+
|
| 566 |
+
except Exception as e:
|
| 567 |
+
print(f"[ERROR] Audio video generation failed for {task_id}: {str(e)}")
|
| 568 |
+
import traceback
|
| 569 |
+
traceback.print_exc()
|
| 570 |
+
task['audio_video_error'] = str(e)
|
| 571 |
+
task['audio_video_ready'] = False
|
| 572 |
+
task['audio_video_generating'] = False
|
| 573 |
+
|
| 574 |
+
|
| 575 |
+
@app.get("/api/audio-video-status/{task_id}")
|
| 576 |
+
async def get_audio_video_status(task_id: str):
|
| 577 |
+
"""Check if audio video is ready for download"""
|
| 578 |
+
if task_id not in tasks_storage:
|
| 579 |
+
raise HTTPException(status_code=404, detail="Task not found")
|
| 580 |
+
|
| 581 |
+
task = tasks_storage[task_id]
|
| 582 |
+
|
| 583 |
+
return {
|
| 584 |
+
"task_id": task_id,
|
| 585 |
+
"audio_video_ready": task.get('audio_video_ready', False),
|
| 586 |
+
"audio_video_generating": task.get('audio_video_generating', False),
|
| 587 |
+
"audio_video_progress": task.get('audio_video_progress', 0.0),
|
| 588 |
+
"audio_video_error": task.get('audio_video_error', None)
|
| 589 |
+
}
|
| 590 |
+
|
| 591 |
+
|
| 592 |
+
@app.get("/api/download-audio-video/{task_id}")
|
| 593 |
+
async def download_audio_video(task_id: str):
|
| 594 |
+
"""Download video with audio"""
|
| 595 |
+
if task_id not in tasks_storage:
|
| 596 |
+
raise HTTPException(status_code=404, detail="Task not found")
|
| 597 |
+
|
| 598 |
+
task = tasks_storage[task_id]
|
| 599 |
+
|
| 600 |
+
if not task.get('audio_video_ready'):
|
| 601 |
+
raise HTTPException(status_code=400, detail="Audio video not ready")
|
| 602 |
+
|
| 603 |
+
video_path = task.get('audio_video_path')
|
| 604 |
+
|
| 605 |
+
if not video_path:
|
| 606 |
+
raise HTTPException(status_code=404, detail="Video path not set")
|
| 607 |
+
|
| 608 |
+
if not os.path.exists(video_path):
|
| 609 |
+
raise HTTPException(status_code=404, detail=f"Video file not found at {video_path}")
|
| 610 |
+
|
| 611 |
+
return FileResponse(
|
| 612 |
+
video_path,
|
| 613 |
+
media_type="video/mp4",
|
| 614 |
+
filename=f"footsteps_with_audio_{task_id}.mp4"
|
| 615 |
+
)
|
| 616 |
+
|
| 617 |
+
|
| 618 |
+
@app.post("/api/live/capture-floor")
|
| 619 |
+
async def capture_floor_frame(file: UploadFile = File(...)):
|
| 620 |
+
"""Capture floor frame for live mode"""
|
| 621 |
+
if not file.content_type.startswith('image/'):
|
| 622 |
+
raise HTTPException(status_code=400, detail="File must be an image")
|
| 623 |
+
|
| 624 |
+
session_id = f"live_{datetime.now().strftime('%Y%m%d_%H%M%S')}_{os.urandom(4).hex()}"
|
| 625 |
+
|
| 626 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.jpg')
|
| 627 |
+
content = await file.read()
|
| 628 |
+
temp_file.write(content)
|
| 629 |
+
temp_file.close()
|
| 630 |
+
|
| 631 |
+
tasks_storage[session_id] = {
|
| 632 |
+
'type': 'live',
|
| 633 |
+
'floor_frame': temp_file.name,
|
| 634 |
+
'created_at': datetime.now().isoformat()
|
| 635 |
+
}
|
| 636 |
+
|
| 637 |
+
return {
|
| 638 |
+
"session_id": session_id,
|
| 639 |
+
"message": "Floor frame captured"
|
| 640 |
+
}
|
| 641 |
+
|
| 642 |
+
|
| 643 |
+
@app.post("/api/live/detect-frame/{session_id}")
|
| 644 |
+
async def detect_frame(session_id: str, file: UploadFile = File(...)):
|
| 645 |
+
"""Detect footsteps in a single frame using LiveFootstepDetector"""
|
| 646 |
+
if session_id not in tasks_storage:
|
| 647 |
+
raise HTTPException(status_code=404, detail="Session not found")
|
| 648 |
+
|
| 649 |
+
if not file.content_type.startswith('image/'):
|
| 650 |
+
raise HTTPException(status_code=400, detail="File must be an image")
|
| 651 |
+
|
| 652 |
+
session = tasks_storage[session_id]
|
| 653 |
+
|
| 654 |
+
# Read frame
|
| 655 |
+
content = await file.read()
|
| 656 |
+
nparr = np.frombuffer(content, np.uint8)
|
| 657 |
+
frame = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
|
| 658 |
+
|
| 659 |
+
if frame is None:
|
| 660 |
+
raise HTTPException(status_code=400, detail="Failed to decode frame")
|
| 661 |
+
|
| 662 |
+
# Initialize detector if not already done
|
| 663 |
+
if 'detector' not in session:
|
| 664 |
+
try:
|
| 665 |
+
# Get audio path from session or use default
|
| 666 |
+
audio_path = session.get('audio_path', 'backend/audio/UrbanFootstepsConcrete.mp3')
|
| 667 |
+
sensitivity = session.get('sensitivity', 'medium')
|
| 668 |
+
yolo_conf = session.get('yolo_conf', 0.5)
|
| 669 |
+
|
| 670 |
+
# Check if audio file exists
|
| 671 |
+
if not os.path.exists(audio_path):
|
| 672 |
+
# Try alternative paths
|
| 673 |
+
alt_paths = [
|
| 674 |
+
'audio/UrbanFootstepsConcrete.mp3',
|
| 675 |
+
'backend/audio/Footsteps on Gravel Path Outdoor.mp3',
|
| 676 |
+
'audio/Footsteps on Gravel Path Outdoor.mp3'
|
| 677 |
+
]
|
| 678 |
+
audio_found = False
|
| 679 |
+
for alt_path in alt_paths:
|
| 680 |
+
if os.path.exists(alt_path):
|
| 681 |
+
audio_path = alt_path
|
| 682 |
+
audio_found = True
|
| 683 |
+
break
|
| 684 |
+
if not audio_found:
|
| 685 |
+
raise HTTPException(status_code=404,
|
| 686 |
+
detail=f"Audio file not found. Searched paths: {audio_path}, {alt_paths}")
|
| 687 |
+
|
| 688 |
+
# Create detector instance
|
| 689 |
+
detector = LiveFootstepDetector(
|
| 690 |
+
audio_path=audio_path,
|
| 691 |
+
sensitivity=sensitivity,
|
| 692 |
+
yolo_conf=yolo_conf
|
| 693 |
+
)
|
| 694 |
+
detector.start() # Start audio playback thread
|
| 695 |
+
|
| 696 |
+
session['detector'] = detector
|
| 697 |
+
session['detector_started'] = datetime.now().isoformat()
|
| 698 |
+
|
| 699 |
+
except Exception as e:
|
| 700 |
+
raise HTTPException(status_code=500, detail=f"Failed to initialize detector: {str(e)}")
|
| 701 |
+
|
| 702 |
+
detector = session['detector']
|
| 703 |
+
|
| 704 |
+
# Process frame with detector
|
| 705 |
+
try:
|
| 706 |
+
processed_frame, detected_foot = detector.process_frame(frame)
|
| 707 |
+
|
| 708 |
+
# Encode processed frame back to JPEG
|
| 709 |
+
_, buffer = cv2.imencode('.jpg', processed_frame)
|
| 710 |
+
frame_base64 = base64.b64encode(buffer).decode('utf-8')
|
| 711 |
+
|
| 712 |
+
response = {
|
| 713 |
+
"session_id": session_id,
|
| 714 |
+
"detected": detected_foot is not None,
|
| 715 |
+
"foot": detected_foot, # 'LEFT', 'RIGHT', or None
|
| 716 |
+
"frame": frame_base64, # Processed frame with annotations
|
| 717 |
+
"message": f"{detected_foot} STRIKE!" if detected_foot else "Frame processed"
|
| 718 |
+
}
|
| 719 |
+
|
| 720 |
+
# Update session stats
|
| 721 |
+
if 'detection_count' not in session:
|
| 722 |
+
session['detection_count'] = 0
|
| 723 |
+
if detected_foot:
|
| 724 |
+
session['detection_count'] += 1
|
| 725 |
+
session['last_detection'] = {
|
| 726 |
+
'foot': detected_foot,
|
| 727 |
+
'timestamp': datetime.now().isoformat()
|
| 728 |
+
}
|
| 729 |
+
|
| 730 |
+
return response
|
| 731 |
+
|
| 732 |
+
except Exception as e:
|
| 733 |
+
raise HTTPException(status_code=500, detail=f"Frame processing error: {str(e)}")
|
| 734 |
+
|
| 735 |
+
|
| 736 |
+
@app.post("/api/live/generate-audio/{session_id}")
|
| 737 |
+
async def generate_audio(session_id: str):
|
| 738 |
+
"""Generate audio for live detection based on floor analysis"""
|
| 739 |
+
if session_id not in tasks_storage:
|
| 740 |
+
raise HTTPException(status_code=404, detail="Session not found")
|
| 741 |
+
|
| 742 |
+
session = tasks_storage[session_id]
|
| 743 |
+
|
| 744 |
+
if 'floor_frame' not in session:
|
| 745 |
+
raise HTTPException(status_code=400, detail="No floor frame found")
|
| 746 |
+
|
| 747 |
+
# For now, we'll use a default audio path based on common floor types
|
| 748 |
+
# In a real implementation, this could use LLM vision to analyze the floor
|
| 749 |
+
# and select the appropriate audio file
|
| 750 |
+
|
| 751 |
+
# Default audio paths to try
|
| 752 |
+
audio_paths = [
|
| 753 |
+
'audio/Footsteps on Gravel Path Outdoor.mp3'
|
| 754 |
+
]
|
| 755 |
+
|
| 756 |
+
audio_path = None
|
| 757 |
+
for path in audio_paths:
|
| 758 |
+
if os.path.exists(path):
|
| 759 |
+
audio_path = path
|
| 760 |
+
break
|
| 761 |
+
|
| 762 |
+
if not audio_path:
|
| 763 |
+
raise HTTPException(
|
| 764 |
+
status_code=404,
|
| 765 |
+
detail=f"No audio file found. Please ensure audio files exist in backend/audio/ directory. Searched: {audio_paths}"
|
| 766 |
+
)
|
| 767 |
+
|
| 768 |
+
# Store audio path in session for later use
|
| 769 |
+
session['audio_path'] = audio_path
|
| 770 |
+
session['audio_ready'] = True
|
| 771 |
+
session['surface_type'] = 'concrete' # Default, could be enhanced with LLM analysis
|
| 772 |
+
|
| 773 |
+
return {
|
| 774 |
+
"session_id": session_id,
|
| 775 |
+
"message": "Audio generated successfully",
|
| 776 |
+
"surface_type": session['surface_type'],
|
| 777 |
+
"audio_ready": True
|
| 778 |
+
}
|
| 779 |
+
|
| 780 |
+
|
| 781 |
+
@app.post("/api/live/stop-session/{session_id}")
|
| 782 |
+
async def stop_live_session(session_id: str):
|
| 783 |
+
"""Stop live detection session and cleanup resources"""
|
| 784 |
+
if session_id not in tasks_storage:
|
| 785 |
+
raise HTTPException(status_code=404, detail="Session not found")
|
| 786 |
+
|
| 787 |
+
session = tasks_storage[session_id]
|
| 788 |
+
|
| 789 |
+
# Stop detector if exists
|
| 790 |
+
if 'detector' in session:
|
| 791 |
+
try:
|
| 792 |
+
detector = session['detector']
|
| 793 |
+
detector.stop()
|
| 794 |
+
del session['detector']
|
| 795 |
+
except Exception as e:
|
| 796 |
+
print(f"Error stopping detector: {e}")
|
| 797 |
+
|
| 798 |
+
# Cleanup floor frame
|
| 799 |
+
if 'floor_frame' in session:
|
| 800 |
+
try:
|
| 801 |
+
if os.path.exists(session['floor_frame']):
|
| 802 |
+
os.remove(session['floor_frame'])
|
| 803 |
+
except Exception as e:
|
| 804 |
+
print(f"Error removing floor frame: {e}")
|
| 805 |
+
|
| 806 |
+
# Get stats before deletion
|
| 807 |
+
detection_count = session.get('detection_count', 0)
|
| 808 |
+
last_detection = session.get('last_detection', None)
|
| 809 |
+
|
| 810 |
+
# Remove session
|
| 811 |
+
del tasks_storage[session_id]
|
| 812 |
+
|
| 813 |
+
return {
|
| 814 |
+
"session_id": session_id,
|
| 815 |
+
"message": "Session stopped",
|
| 816 |
+
"stats": {
|
| 817 |
+
"detection_count": detection_count,
|
| 818 |
+
"last_detection": last_detection
|
| 819 |
+
}
|
| 820 |
+
}
|
| 821 |
+
|
| 822 |
+
|
| 823 |
+
'''if __name__ == "__main__":
|
| 824 |
+
import uvicorn
|
| 825 |
+
|
| 826 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|
| 827 |
+
'''
|
| 828 |
+
|
qsec.py
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import librosa
|
| 3 |
+
|
| 4 |
+
def extract_second_audio_librosa(file_path, target_second=0, sample_rate=22050):
|
| 5 |
+
try:
|
| 6 |
+
# Load audio file
|
| 7 |
+
audio_data, sr = librosa.load(file_path, sr=sample_rate)
|
| 8 |
+
|
| 9 |
+
# Calculate start and end samples for the target second
|
| 10 |
+
start_sample = target_second * sr
|
| 11 |
+
end_sample = (target_second + 1) * sr
|
| 12 |
+
|
| 13 |
+
# Ensure we don't go beyond the audio length
|
| 14 |
+
if start_sample >= len(audio_data):
|
| 15 |
+
raise ValueError(f"Target second {target_second} is beyond audio length")
|
| 16 |
+
|
| 17 |
+
end_sample = min(end_sample, len(audio_data))
|
| 18 |
+
|
| 19 |
+
# Extract the second
|
| 20 |
+
second_audio = audio_data[start_sample:end_sample]
|
| 21 |
+
|
| 22 |
+
# If the audio is shorter than 1 second, pad with zeros
|
| 23 |
+
if len(second_audio) < sr:
|
| 24 |
+
second_audio = np.pad(second_audio, (0, sr - len(second_audio)))
|
| 25 |
+
|
| 26 |
+
return second_audio, sr
|
| 27 |
+
|
| 28 |
+
except Exception as e:
|
| 29 |
+
print(f"Error processing audio: {e}")
|
| 30 |
+
return None, None
|
| 31 |
+
|
real.py
ADDED
|
@@ -0,0 +1,1572 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import streamlit as st
|
| 3 |
+
import cv2
|
| 4 |
+
import numpy as np
|
| 5 |
+
import mediapipe as mp
|
| 6 |
+
from pathlib import Path
|
| 7 |
+
from scipy.signal import find_peaks, savgol_filter
|
| 8 |
+
import json
|
| 9 |
+
import subprocess
|
| 10 |
+
import os
|
| 11 |
+
import soundfile as sf
|
| 12 |
+
from datetime import datetime
|
| 13 |
+
import tempfile
|
| 14 |
+
from ultralytics import YOLO
|
| 15 |
+
from agent import process_video_for_footstep_audio
|
| 16 |
+
from sound_agent import main_sound
|
| 17 |
+
from qsec import extract_second_audio_librosa
|
| 18 |
+
import threading
|
| 19 |
+
import queue
|
| 20 |
+
import time
|
| 21 |
+
from PIL import Image
|
| 22 |
+
import io
|
| 23 |
+
|
| 24 |
+
# Suppress TensorFlow warnings
|
| 25 |
+
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
| 26 |
+
import absl.logging
|
| 27 |
+
|
| 28 |
+
absl.logging.set_verbosity(absl.logging.ERROR)
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def get_ffmpeg_path():
|
| 32 |
+
"""Get FFmpeg path with multiple fallback options"""
|
| 33 |
+
possible_paths = [
|
| 34 |
+
"ffmpeg", # Try system ffmpeg first (Docker/Linux)
|
| 35 |
+
r"C:\Users\abhiv\OneDrive\Desktop\agentic ai\SoundFeet\ffmpeg-7.1-essentials_build\bin\ffmpeg.exe", # Local Windows path
|
| 36 |
+
"./ffmpeg-7.1-essentials_build/bin/ffmpeg.exe", # Relative path
|
| 37 |
+
]
|
| 38 |
+
|
| 39 |
+
for path in possible_paths:
|
| 40 |
+
if path == "ffmpeg":
|
| 41 |
+
try:
|
| 42 |
+
result = subprocess.run([path, '-version'], capture_output=True, timeout=5)
|
| 43 |
+
if result.returncode == 0:
|
| 44 |
+
return path
|
| 45 |
+
except:
|
| 46 |
+
continue
|
| 47 |
+
else:
|
| 48 |
+
if os.path.exists(path):
|
| 49 |
+
return path
|
| 50 |
+
return "ffmpeg" # Default to system ffmpeg
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
FFMPEG_PATH = get_ffmpeg_path()
|
| 54 |
+
|
| 55 |
+
# Streamlit Configuration
|
| 56 |
+
st.set_page_config(
|
| 57 |
+
page_title="Hybrid YOLO-MediaPipe Footstep Detection",
|
| 58 |
+
page_icon="π¬",
|
| 59 |
+
layout="wide",
|
| 60 |
+
initial_sidebar_state="expanded"
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
st.markdown("""
|
| 64 |
+
<style>
|
| 65 |
+
.main-header {
|
| 66 |
+
font-size: 2.5rem;
|
| 67 |
+
font-weight: 700;
|
| 68 |
+
background: linear-gradient(90deg, #667eea 0%, #764ba2 100%);
|
| 69 |
+
-webkit-background-clip: text;
|
| 70 |
+
-webkit-text-fill-color: transparent;
|
| 71 |
+
margin-bottom: 2rem;
|
| 72 |
+
}
|
| 73 |
+
.metric-card {
|
| 74 |
+
background: #f0f2f6;
|
| 75 |
+
padding: 1rem;
|
| 76 |
+
border-radius: 0.5rem;
|
| 77 |
+
border-left: 4px solid #667eea;
|
| 78 |
+
}
|
| 79 |
+
.success-box {
|
| 80 |
+
padding: 1rem;
|
| 81 |
+
background: #d4edda;
|
| 82 |
+
border: 1px solid #c3e6cb;
|
| 83 |
+
border-radius: 0.5rem;
|
| 84 |
+
color: #155724;
|
| 85 |
+
}
|
| 86 |
+
.hybrid-badge {
|
| 87 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 88 |
+
color: white;
|
| 89 |
+
padding: 0.5rem 1rem;
|
| 90 |
+
border-radius: 20px;
|
| 91 |
+
display: inline-block;
|
| 92 |
+
font-weight: 600;
|
| 93 |
+
margin: 1rem 0;
|
| 94 |
+
}
|
| 95 |
+
.live-indicator {
|
| 96 |
+
background: #dc3545;
|
| 97 |
+
color: white;
|
| 98 |
+
padding: 0.5rem 1rem;
|
| 99 |
+
border-radius: 20px;
|
| 100 |
+
display: inline-block;
|
| 101 |
+
font-weight: 600;
|
| 102 |
+
animation: pulse 1.5s infinite;
|
| 103 |
+
}
|
| 104 |
+
@keyframes pulse {
|
| 105 |
+
0%, 100% { opacity: 1; }
|
| 106 |
+
50% { opacity: 0.5; }
|
| 107 |
+
}
|
| 108 |
+
.ready-badge {
|
| 109 |
+
background: #28a745;
|
| 110 |
+
color: white;
|
| 111 |
+
padding: 0.5rem 1rem;
|
| 112 |
+
border-radius: 20px;
|
| 113 |
+
display: inline-block;
|
| 114 |
+
font-weight: 600;
|
| 115 |
+
}
|
| 116 |
+
</style>
|
| 117 |
+
""", unsafe_allow_html=True)
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
class LiveFootstepDetector:
|
| 121 |
+
"""Real-time footstep detection for live camera feed"""
|
| 122 |
+
|
| 123 |
+
def __init__(self, audio_path, sensitivity='medium', yolo_conf=0.5):
|
| 124 |
+
self.audio_path = audio_path
|
| 125 |
+
self.sensitivity = sensitivity
|
| 126 |
+
self.yolo_conf = yolo_conf
|
| 127 |
+
self.running = False
|
| 128 |
+
self.audio_ready = False
|
| 129 |
+
|
| 130 |
+
# Load footstep audio
|
| 131 |
+
try:
|
| 132 |
+
self.footstep_audio, self.sample_rate = extract_second_audio_librosa(
|
| 133 |
+
file_path=audio_path,
|
| 134 |
+
target_second=5,
|
| 135 |
+
sample_rate=44100
|
| 136 |
+
)
|
| 137 |
+
self.audio_ready = True
|
| 138 |
+
except Exception as e:
|
| 139 |
+
st.error(f"Failed to load audio: {str(e)}")
|
| 140 |
+
self.audio_ready = False
|
| 141 |
+
|
| 142 |
+
# Initialize detection models
|
| 143 |
+
try:
|
| 144 |
+
self.yolo_model = YOLO('yolov8n.pt')
|
| 145 |
+
self.mp_pose = mp.solutions.pose
|
| 146 |
+
self.pose = self.mp_pose.Pose(
|
| 147 |
+
static_image_mode=False,
|
| 148 |
+
model_complexity=1,
|
| 149 |
+
smooth_landmarks=True,
|
| 150 |
+
min_detection_confidence=0.5,
|
| 151 |
+
min_tracking_confidence=0.5
|
| 152 |
+
)
|
| 153 |
+
except Exception as e:
|
| 154 |
+
st.error(f"Failed to initialize models: {str(e)}")
|
| 155 |
+
return
|
| 156 |
+
|
| 157 |
+
# Landmark indices
|
| 158 |
+
self.LEFT_HEEL = 29
|
| 159 |
+
self.RIGHT_HEEL = 30
|
| 160 |
+
|
| 161 |
+
# Detection thresholds
|
| 162 |
+
self.thresholds = {
|
| 163 |
+
'low': {'prominence': 0.02, 'velocity_threshold': 0.015},
|
| 164 |
+
'medium': {'prominence': 0.015, 'velocity_threshold': 0.012},
|
| 165 |
+
'high': {'prominence': 0.01, 'velocity_threshold': 0.010}
|
| 166 |
+
}[sensitivity]
|
| 167 |
+
|
| 168 |
+
# Tracking state
|
| 169 |
+
self.prev_left_y = None
|
| 170 |
+
self.prev_right_y = None
|
| 171 |
+
self.prev_time = None
|
| 172 |
+
self.left_buffer = []
|
| 173 |
+
self.right_buffer = []
|
| 174 |
+
self.buffer_size = 10
|
| 175 |
+
|
| 176 |
+
# Audio playback
|
| 177 |
+
self.audio_queue = queue.Queue()
|
| 178 |
+
self.audio_thread = None
|
| 179 |
+
|
| 180 |
+
def start_audio_playback(self):
|
| 181 |
+
"""Start audio playback thread"""
|
| 182 |
+
if not self.audio_ready:
|
| 183 |
+
return
|
| 184 |
+
|
| 185 |
+
def play_audio():
|
| 186 |
+
import pyaudio
|
| 187 |
+
p = pyaudio.PyAudio()
|
| 188 |
+
stream = p.open(
|
| 189 |
+
format=pyaudio.paFloat32,
|
| 190 |
+
channels=1,
|
| 191 |
+
rate=self.sample_rate,
|
| 192 |
+
output=True
|
| 193 |
+
)
|
| 194 |
+
|
| 195 |
+
while self.running:
|
| 196 |
+
try:
|
| 197 |
+
foot = self.audio_queue.get(timeout=0.1)
|
| 198 |
+
# Play footstep sound
|
| 199 |
+
stream.write(self.footstep_audio.astype(np.float32).tobytes())
|
| 200 |
+
except queue.Empty:
|
| 201 |
+
continue
|
| 202 |
+
except Exception as e:
|
| 203 |
+
print(f"Audio playback error: {e}")
|
| 204 |
+
|
| 205 |
+
stream.stop_stream()
|
| 206 |
+
stream.close()
|
| 207 |
+
p.terminate()
|
| 208 |
+
|
| 209 |
+
self.audio_thread = threading.Thread(target=play_audio, daemon=True)
|
| 210 |
+
self.audio_thread.start()
|
| 211 |
+
|
| 212 |
+
def detect_heel_strike(self, current_y, prev_y, foot_buffer):
|
| 213 |
+
"""Detect heel strike based on vertical velocity and position"""
|
| 214 |
+
if prev_y is None:
|
| 215 |
+
return False
|
| 216 |
+
|
| 217 |
+
# Calculate vertical velocity (downward is positive)
|
| 218 |
+
velocity = current_y - prev_y
|
| 219 |
+
|
| 220 |
+
# Add to buffer
|
| 221 |
+
foot_buffer.append(current_y)
|
| 222 |
+
if len(foot_buffer) > self.buffer_size:
|
| 223 |
+
foot_buffer.pop(0)
|
| 224 |
+
|
| 225 |
+
if len(foot_buffer) < 5:
|
| 226 |
+
return False
|
| 227 |
+
|
| 228 |
+
# Detect strike: downward movement followed by stabilization
|
| 229 |
+
# Current position is low (heel on ground)
|
| 230 |
+
# Recent movement was downward
|
| 231 |
+
# Velocity is slowing (strike impact)
|
| 232 |
+
recent_velocities = [foot_buffer[i + 1] - foot_buffer[i]
|
| 233 |
+
for i in range(len(foot_buffer) - 1)]
|
| 234 |
+
|
| 235 |
+
avg_velocity = np.mean(recent_velocities[-3:]) if len(recent_velocities) >= 3 else 0
|
| 236 |
+
|
| 237 |
+
is_strike = (
|
| 238 |
+
current_y > 0.7 and # Heel is low in frame
|
| 239 |
+
velocity > self.thresholds['velocity_threshold'] and # Moving down
|
| 240 |
+
avg_velocity < velocity * 0.5 # Velocity decreasing (impact)
|
| 241 |
+
)
|
| 242 |
+
|
| 243 |
+
return is_strike
|
| 244 |
+
|
| 245 |
+
def process_frame(self, frame):
|
| 246 |
+
"""Process single frame and detect footsteps"""
|
| 247 |
+
if not self.audio_ready:
|
| 248 |
+
return frame, None
|
| 249 |
+
|
| 250 |
+
detected_foot = None
|
| 251 |
+
|
| 252 |
+
try:
|
| 253 |
+
# YOLO detection
|
| 254 |
+
results = self.yolo_model(frame, conf=self.yolo_conf, classes=[0], verbose=False)
|
| 255 |
+
|
| 256 |
+
person_detected = False
|
| 257 |
+
bbox = None
|
| 258 |
+
|
| 259 |
+
for result in results:
|
| 260 |
+
boxes = result.boxes
|
| 261 |
+
if len(boxes) > 0:
|
| 262 |
+
person_detected = True
|
| 263 |
+
box = boxes[0] # Take first person
|
| 264 |
+
x1, y1, x2, y2 = box.xyxy[0].cpu().numpy()
|
| 265 |
+
bbox = (int(x1), int(y1), int(x2), int(y2))
|
| 266 |
+
|
| 267 |
+
# Draw YOLO bbox
|
| 268 |
+
cv2.rectangle(frame, (bbox[0], bbox[1]), (bbox[2], bbox[3]),
|
| 269 |
+
(255, 255, 0), 2)
|
| 270 |
+
break
|
| 271 |
+
|
| 272 |
+
# MediaPipe pose estimation
|
| 273 |
+
if person_detected and bbox:
|
| 274 |
+
# Crop to person region with padding
|
| 275 |
+
x1, y1, x2, y2 = bbox
|
| 276 |
+
pad = 20
|
| 277 |
+
x1 = max(0, x1 - pad)
|
| 278 |
+
y1 = max(0, y1 - pad)
|
| 279 |
+
x2 = min(frame.shape[1], x2 + pad)
|
| 280 |
+
y2 = min(frame.shape[0], y2 + pad)
|
| 281 |
+
|
| 282 |
+
cropped = frame[y1:y2, x1:x2]
|
| 283 |
+
rgb_frame = cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB)
|
| 284 |
+
pose_results = self.pose.process(rgb_frame)
|
| 285 |
+
|
| 286 |
+
if pose_results.pose_landmarks:
|
| 287 |
+
landmarks = pose_results.pose_landmarks.landmark
|
| 288 |
+
|
| 289 |
+
# Get heel positions (adjusted to full frame)
|
| 290 |
+
left_heel = landmarks[self.LEFT_HEEL]
|
| 291 |
+
right_heel = landmarks[self.RIGHT_HEEL]
|
| 292 |
+
|
| 293 |
+
left_y = (left_heel.y * (y2 - y1) + y1) / frame.shape[0]
|
| 294 |
+
right_y = (right_heel.y * (y2 - y1) + y1) / frame.shape[0]
|
| 295 |
+
|
| 296 |
+
# Detect strikes
|
| 297 |
+
left_strike = self.detect_heel_strike(
|
| 298 |
+
left_y, self.prev_left_y, self.left_buffer
|
| 299 |
+
)
|
| 300 |
+
right_strike = self.detect_heel_strike(
|
| 301 |
+
right_y, self.prev_right_y, self.right_buffer
|
| 302 |
+
)
|
| 303 |
+
|
| 304 |
+
if left_strike:
|
| 305 |
+
detected_foot = 'LEFT'
|
| 306 |
+
self.audio_queue.put('LEFT')
|
| 307 |
+
elif right_strike:
|
| 308 |
+
detected_foot = 'RIGHT'
|
| 309 |
+
self.audio_queue.put('RIGHT')
|
| 310 |
+
|
| 311 |
+
# Update previous positions
|
| 312 |
+
self.prev_left_y = left_y
|
| 313 |
+
self.prev_right_y = right_y
|
| 314 |
+
|
| 315 |
+
# Draw skeleton on full frame
|
| 316 |
+
for landmark in landmarks:
|
| 317 |
+
x = int((landmark.x * (x2 - x1) + x1))
|
| 318 |
+
y = int((landmark.y * (y2 - y1) + y1))
|
| 319 |
+
cv2.circle(frame, (x, y), 3, (0, 255, 0), -1)
|
| 320 |
+
|
| 321 |
+
# Highlight heels
|
| 322 |
+
left_heel_x = int((left_heel.x * (x2 - x1) + x1))
|
| 323 |
+
left_heel_y = int((left_heel.y * (y2 - y1) + y1))
|
| 324 |
+
right_heel_x = int((right_heel.x * (x2 - x1) + x1))
|
| 325 |
+
right_heel_y = int((right_heel.y * (y2 - y1) + y1))
|
| 326 |
+
|
| 327 |
+
cv2.circle(frame, (left_heel_x, left_heel_y), 8, (0, 255, 0), -1)
|
| 328 |
+
cv2.circle(frame, (right_heel_x, right_heel_y), 8, (0, 100, 255), -1)
|
| 329 |
+
|
| 330 |
+
if detected_foot:
|
| 331 |
+
# Show strike indicator
|
| 332 |
+
heel_x = left_heel_x if detected_foot == 'LEFT' else right_heel_x
|
| 333 |
+
heel_y = left_heel_y if detected_foot == 'LEFT' else right_heel_y
|
| 334 |
+
color = (0, 255, 0) if detected_foot == 'LEFT' else (0, 100, 255)
|
| 335 |
+
|
| 336 |
+
cv2.circle(frame, (heel_x, heel_y), 30, color, 3)
|
| 337 |
+
cv2.putText(frame, f"{detected_foot} STRIKE!",
|
| 338 |
+
(heel_x - 50, heel_y - 40),
|
| 339 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.7, color, 2)
|
| 340 |
+
|
| 341 |
+
# Draw status
|
| 342 |
+
status_text = "READY" if self.audio_ready else "NO AUDIO"
|
| 343 |
+
status_color = (0, 255, 0) if self.audio_ready else (0, 0, 255)
|
| 344 |
+
cv2.rectangle(frame, (10, 10), (150, 50), (0, 0, 0), -1)
|
| 345 |
+
cv2.putText(frame, status_text, (20, 35),
|
| 346 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.7, status_color, 2)
|
| 347 |
+
|
| 348 |
+
except Exception as e:
|
| 349 |
+
print(f"Frame processing error: {e}")
|
| 350 |
+
|
| 351 |
+
return frame, detected_foot
|
| 352 |
+
|
| 353 |
+
def start(self):
|
| 354 |
+
"""Start the detector"""
|
| 355 |
+
self.running = True
|
| 356 |
+
self.start_audio_playback()
|
| 357 |
+
|
| 358 |
+
def stop(self):
|
| 359 |
+
"""Stop the detector"""
|
| 360 |
+
self.running = False
|
| 361 |
+
if self.audio_thread:
|
| 362 |
+
self.audio_thread.join(timeout=2)
|
| 363 |
+
|
| 364 |
+
|
| 365 |
+
class HybridFootstepDetectionPipeline:
|
| 366 |
+
"""
|
| 367 |
+
Hybrid Detection Pipeline for video files:
|
| 368 |
+
1. YOLO detects person bounding boxes
|
| 369 |
+
2. MediaPipe estimates pose on detected regions
|
| 370 |
+
3. Track footsteps with improved accuracy
|
| 371 |
+
"""
|
| 372 |
+
|
| 373 |
+
def __init__(self, fps=30, sensitivity='medium', yolo_conf=0.5):
|
| 374 |
+
self.fps = fps
|
| 375 |
+
self.sensitivity = sensitivity
|
| 376 |
+
self.yolo_conf = yolo_conf
|
| 377 |
+
|
| 378 |
+
# Initialize YOLO detector
|
| 379 |
+
try:
|
| 380 |
+
self.yolo_model = YOLO('yolov8n.pt')
|
| 381 |
+
st.success("β
YOLO detector loaded successfully")
|
| 382 |
+
except Exception as e:
|
| 383 |
+
st.warning(f"β οΈ YOLO loading issue: {str(e)}. Downloading model...")
|
| 384 |
+
try:
|
| 385 |
+
self.yolo_model = YOLO('yolov8n.pt')
|
| 386 |
+
st.success("β
YOLO detector loaded successfully")
|
| 387 |
+
except Exception as e2:
|
| 388 |
+
st.error(f"β Failed to load YOLO: {str(e2)}")
|
| 389 |
+
self.yolo_model = None
|
| 390 |
+
|
| 391 |
+
# Initialize MediaPipe pose estimator
|
| 392 |
+
try:
|
| 393 |
+
self.mp_pose = mp.solutions.pose
|
| 394 |
+
self.pose = self.mp_pose.Pose(
|
| 395 |
+
static_image_mode=False,
|
| 396 |
+
model_complexity=1,
|
| 397 |
+
smooth_landmarks=True,
|
| 398 |
+
min_detection_confidence=0.5,
|
| 399 |
+
min_tracking_confidence=0.5
|
| 400 |
+
)
|
| 401 |
+
st.success("β
MediaPipe pose estimator loaded successfully")
|
| 402 |
+
except Exception as e:
|
| 403 |
+
st.error(f"β Failed to initialize MediaPipe: {str(e)}")
|
| 404 |
+
self.pose = None
|
| 405 |
+
|
| 406 |
+
# Landmark indices
|
| 407 |
+
self.LEFT_HEEL = 29
|
| 408 |
+
self.RIGHT_HEEL = 30
|
| 409 |
+
self.LEFT_ANKLE = 27
|
| 410 |
+
self.RIGHT_ANKLE = 28
|
| 411 |
+
|
| 412 |
+
# Detection thresholds
|
| 413 |
+
self.thresholds = {
|
| 414 |
+
'low': {'prominence': 0.02, 'min_interval': 0.4},
|
| 415 |
+
'medium': {'prominence': 0.015, 'min_interval': 0.3},
|
| 416 |
+
'high': {'prominence': 0.01, 'min_interval': 0.25}
|
| 417 |
+
}[sensitivity]
|
| 418 |
+
|
| 419 |
+
# Tracking state
|
| 420 |
+
self.person_tracker = PersonTracker()
|
| 421 |
+
|
| 422 |
+
def detect_person_yolo(self, frame):
|
| 423 |
+
"""Detect person using YOLO"""
|
| 424 |
+
if self.yolo_model is None:
|
| 425 |
+
return []
|
| 426 |
+
|
| 427 |
+
try:
|
| 428 |
+
results = self.yolo_model(frame, conf=self.yolo_conf, classes=[0], verbose=False)
|
| 429 |
+
|
| 430 |
+
person_boxes = []
|
| 431 |
+
for result in results:
|
| 432 |
+
boxes = result.boxes
|
| 433 |
+
for box in boxes:
|
| 434 |
+
x1, y1, x2, y2 = box.xyxy[0].cpu().numpy()
|
| 435 |
+
conf = box.conf[0].cpu().numpy()
|
| 436 |
+
person_boxes.append((int(x1), int(y1), int(x2), int(y2), float(conf)))
|
| 437 |
+
|
| 438 |
+
return person_boxes
|
| 439 |
+
except Exception as e:
|
| 440 |
+
st.warning(f"YOLO detection failed: {str(e)}")
|
| 441 |
+
return []
|
| 442 |
+
|
| 443 |
+
def estimate_pose_mediapipe(self, frame, bbox=None):
|
| 444 |
+
"""Estimate pose using MediaPipe on specified region"""
|
| 445 |
+
if self.pose is None:
|
| 446 |
+
return None
|
| 447 |
+
|
| 448 |
+
try:
|
| 449 |
+
if bbox is not None:
|
| 450 |
+
x1, y1, x2, y2 = bbox
|
| 451 |
+
pad = 20
|
| 452 |
+
x1 = max(0, x1 - pad)
|
| 453 |
+
y1 = max(0, y1 - pad)
|
| 454 |
+
x2 = min(frame.shape[1], x2 + pad)
|
| 455 |
+
y2 = min(frame.shape[0], y2 + pad)
|
| 456 |
+
|
| 457 |
+
cropped = frame[y1:y2, x1:x2]
|
| 458 |
+
if cropped.size == 0:
|
| 459 |
+
return None
|
| 460 |
+
|
| 461 |
+
rgb_frame = cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB)
|
| 462 |
+
results = self.pose.process(rgb_frame)
|
| 463 |
+
|
| 464 |
+
if results.pose_landmarks:
|
| 465 |
+
for landmark in results.pose_landmarks.landmark:
|
| 466 |
+
landmark.x = (landmark.x * (x2 - x1) + x1) / frame.shape[1]
|
| 467 |
+
landmark.y = (landmark.y * (y2 - y1) + y1) / frame.shape[0]
|
| 468 |
+
|
| 469 |
+
return results
|
| 470 |
+
else:
|
| 471 |
+
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 472 |
+
return self.pose.process(rgb_frame)
|
| 473 |
+
|
| 474 |
+
except Exception as e:
|
| 475 |
+
return None
|
| 476 |
+
|
| 477 |
+
def process_video(self, video_path, progress_callback=None):
|
| 478 |
+
"""Process video with hybrid YOLO-MediaPipe pipeline"""
|
| 479 |
+
|
| 480 |
+
if self.yolo_model is None or self.pose is None:
|
| 481 |
+
st.error("β Detection models not available")
|
| 482 |
+
return None
|
| 483 |
+
|
| 484 |
+
cap = cv2.VideoCapture(str(video_path))
|
| 485 |
+
if not cap.isOpened():
|
| 486 |
+
st.error("β Could not open video file")
|
| 487 |
+
return None
|
| 488 |
+
|
| 489 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 490 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 491 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 492 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 493 |
+
|
| 494 |
+
if fps <= 0 or total_frames <= 0:
|
| 495 |
+
st.error("β Invalid video properties")
|
| 496 |
+
cap.release()
|
| 497 |
+
return None
|
| 498 |
+
|
| 499 |
+
left_positions = []
|
| 500 |
+
right_positions = []
|
| 501 |
+
detection_confidence = []
|
| 502 |
+
frame_idx = 0
|
| 503 |
+
|
| 504 |
+
yolo_detections = 0
|
| 505 |
+
pose_detections = 0
|
| 506 |
+
|
| 507 |
+
st.info(f"π Processing with Hybrid Pipeline: {total_frames} frames")
|
| 508 |
+
|
| 509 |
+
try:
|
| 510 |
+
while cap.isOpened():
|
| 511 |
+
ret, frame = cap.read()
|
| 512 |
+
if not ret:
|
| 513 |
+
break
|
| 514 |
+
|
| 515 |
+
person_boxes = self.detect_person_yolo(frame)
|
| 516 |
+
|
| 517 |
+
if person_boxes:
|
| 518 |
+
yolo_detections += 1
|
| 519 |
+
best_box = self.person_tracker.select_best_person(person_boxes, frame_idx)
|
| 520 |
+
bbox = best_box[:4]
|
| 521 |
+
results = self.estimate_pose_mediapipe(frame, bbox)
|
| 522 |
+
|
| 523 |
+
if results and results.pose_landmarks:
|
| 524 |
+
pose_detections += 1
|
| 525 |
+
landmarks = results.pose_landmarks.landmark
|
| 526 |
+
|
| 527 |
+
left_y = landmarks[self.LEFT_HEEL].y
|
| 528 |
+
right_y = landmarks[self.RIGHT_HEEL].y
|
| 529 |
+
conf = (landmarks[self.LEFT_HEEL].visibility +
|
| 530 |
+
landmarks[self.RIGHT_HEEL].visibility) / 2
|
| 531 |
+
|
| 532 |
+
left_positions.append(left_y)
|
| 533 |
+
right_positions.append(right_y)
|
| 534 |
+
detection_confidence.append(conf)
|
| 535 |
+
else:
|
| 536 |
+
left_positions.append(np.nan)
|
| 537 |
+
right_positions.append(np.nan)
|
| 538 |
+
detection_confidence.append(0.0)
|
| 539 |
+
else:
|
| 540 |
+
results = self.estimate_pose_mediapipe(frame, bbox=None)
|
| 541 |
+
|
| 542 |
+
if results and results.pose_landmarks:
|
| 543 |
+
pose_detections += 1
|
| 544 |
+
landmarks = results.pose_landmarks.landmark
|
| 545 |
+
|
| 546 |
+
left_positions.append(landmarks[self.LEFT_HEEL].y)
|
| 547 |
+
right_positions.append(landmarks[self.RIGHT_HEEL].y)
|
| 548 |
+
detection_confidence.append(0.5)
|
| 549 |
+
else:
|
| 550 |
+
left_positions.append(np.nan)
|
| 551 |
+
right_positions.append(np.nan)
|
| 552 |
+
detection_confidence.append(0.0)
|
| 553 |
+
|
| 554 |
+
frame_idx += 1
|
| 555 |
+
|
| 556 |
+
if progress_callback and frame_idx % 10 == 0:
|
| 557 |
+
progress = min(frame_idx / total_frames, 1.0)
|
| 558 |
+
progress_callback(progress)
|
| 559 |
+
|
| 560 |
+
except Exception as e:
|
| 561 |
+
st.error(f"β Video processing error: {str(e)}")
|
| 562 |
+
cap.release()
|
| 563 |
+
return None
|
| 564 |
+
|
| 565 |
+
cap.release()
|
| 566 |
+
|
| 567 |
+
st.info(
|
| 568 |
+
f"π YOLO detections: {yolo_detections}/{total_frames} frames ({yolo_detections / total_frames * 100:.1f}%)")
|
| 569 |
+
st.info(
|
| 570 |
+
f"π Pose detections: {pose_detections}/{total_frames} frames ({pose_detections / total_frames * 100:.1f}%)")
|
| 571 |
+
|
| 572 |
+
if len(left_positions) == 0:
|
| 573 |
+
st.error("β No frames processed successfully")
|
| 574 |
+
return None
|
| 575 |
+
|
| 576 |
+
try:
|
| 577 |
+
left_series = pd.Series(left_positions).interpolate(method='linear')
|
| 578 |
+
left_series = left_series.bfill().ffill()
|
| 579 |
+
left_positions = left_series.values
|
| 580 |
+
|
| 581 |
+
right_series = pd.Series(right_positions).interpolate(method='linear')
|
| 582 |
+
right_series = right_series.bfill().ffill()
|
| 583 |
+
right_positions = right_series.values
|
| 584 |
+
|
| 585 |
+
if len(left_positions) > 5:
|
| 586 |
+
window = min(11, len(left_positions) if len(left_positions) % 2 == 1 else len(left_positions) - 1)
|
| 587 |
+
if window >= 3:
|
| 588 |
+
left_positions = savgol_filter(left_positions, window, 2)
|
| 589 |
+
right_positions = savgol_filter(right_positions, window, 2)
|
| 590 |
+
|
| 591 |
+
left_strikes = self._detect_strikes(left_positions, fps)
|
| 592 |
+
right_strikes = self._detect_strikes(right_positions, fps)
|
| 593 |
+
|
| 594 |
+
events = []
|
| 595 |
+
|
| 596 |
+
for frame in left_strikes:
|
| 597 |
+
events.append({
|
| 598 |
+
'frame': int(frame),
|
| 599 |
+
'timecode': self._frames_to_smpte(frame, fps),
|
| 600 |
+
'foot': 'LEFT',
|
| 601 |
+
'event': 'HEEL_STRIKE',
|
| 602 |
+
'time_seconds': frame / fps,
|
| 603 |
+
'confidence': detection_confidence[int(frame)] if int(frame) < len(detection_confidence) else 0.5
|
| 604 |
+
})
|
| 605 |
+
|
| 606 |
+
for frame in right_strikes:
|
| 607 |
+
events.append({
|
| 608 |
+
'frame': int(frame),
|
| 609 |
+
'timecode': self._frames_to_smpte(frame, fps),
|
| 610 |
+
'foot': 'RIGHT',
|
| 611 |
+
'event': 'HEEL_STRIKE',
|
| 612 |
+
'time_seconds': frame / fps,
|
| 613 |
+
'confidence': detection_confidence[int(frame)] if int(frame) < len(detection_confidence) else 0.5
|
| 614 |
+
})
|
| 615 |
+
|
| 616 |
+
events = sorted(events, key=lambda x: x['frame'])
|
| 617 |
+
|
| 618 |
+
return {
|
| 619 |
+
'events': events,
|
| 620 |
+
'fps': fps,
|
| 621 |
+
'total_frames': total_frames,
|
| 622 |
+
'width': width,
|
| 623 |
+
'height': height,
|
| 624 |
+
'left_positions': left_positions.tolist() if hasattr(left_positions, 'tolist') else left_positions,
|
| 625 |
+
'right_positions': right_positions.tolist() if hasattr(right_positions, 'tolist') else right_positions,
|
| 626 |
+
'detection_stats': {
|
| 627 |
+
'yolo_detections': yolo_detections,
|
| 628 |
+
'pose_detections': pose_detections,
|
| 629 |
+
'total_frames': total_frames
|
| 630 |
+
}
|
| 631 |
+
}
|
| 632 |
+
|
| 633 |
+
except Exception as e:
|
| 634 |
+
st.error(f"β Data processing error: {str(e)}")
|
| 635 |
+
return None
|
| 636 |
+
|
| 637 |
+
def _detect_strikes(self, positions, fps):
|
| 638 |
+
"""Detect heel strikes from position data"""
|
| 639 |
+
try:
|
| 640 |
+
peaks, _ = find_peaks(
|
| 641 |
+
positions,
|
| 642 |
+
prominence=self.thresholds['prominence'],
|
| 643 |
+
distance=int(fps * self.thresholds['min_interval']),
|
| 644 |
+
height=0.7
|
| 645 |
+
)
|
| 646 |
+
return peaks
|
| 647 |
+
except Exception as e:
|
| 648 |
+
st.warning(f"Peak detection failed: {str(e)}")
|
| 649 |
+
return np.array([])
|
| 650 |
+
|
| 651 |
+
def _frames_to_smpte(self, frame, fps):
|
| 652 |
+
"""Convert frame number to SMPTE timecode"""
|
| 653 |
+
total_seconds = frame / fps
|
| 654 |
+
hours = int(total_seconds // 3600)
|
| 655 |
+
minutes = int((total_seconds % 3600) // 60)
|
| 656 |
+
seconds = int(total_seconds % 60)
|
| 657 |
+
frames = int((total_seconds * fps) % fps)
|
| 658 |
+
return f"{hours:02d}:{minutes:02d}:{seconds:02d}:{frames:02d}"
|
| 659 |
+
|
| 660 |
+
|
| 661 |
+
class PersonTracker:
|
| 662 |
+
"""Track person across frames for consistency"""
|
| 663 |
+
|
| 664 |
+
def __init__(self, iou_threshold=0.3):
|
| 665 |
+
self.tracked_box = None
|
| 666 |
+
self.last_frame = -1
|
| 667 |
+
self.iou_threshold = iou_threshold
|
| 668 |
+
|
| 669 |
+
def calculate_iou(self, box1, box2):
|
| 670 |
+
"""Calculate IoU between two bounding boxes"""
|
| 671 |
+
x1_1, y1_1, x2_1, y2_1 = box1[:4]
|
| 672 |
+
x1_2, y1_2, x2_2, y2_2 = box2[:4]
|
| 673 |
+
|
| 674 |
+
xi1 = max(x1_1, x1_2)
|
| 675 |
+
yi1 = max(y1_1, y1_2)
|
| 676 |
+
xi2 = min(x2_1, x2_2)
|
| 677 |
+
yi2 = min(y2_1, y2_2)
|
| 678 |
+
|
| 679 |
+
inter_area = max(0, xi2 - xi1) * max(0, yi2 - yi1)
|
| 680 |
+
|
| 681 |
+
box1_area = (x2_1 - x1_1) * (y2_1 - y1_1)
|
| 682 |
+
box2_area = (x2_2 - x1_2) * (y2_2 - y1_2)
|
| 683 |
+
|
| 684 |
+
union_area = box1_area + box2_area - inter_area
|
| 685 |
+
|
| 686 |
+
return inter_area / union_area if union_area > 0 else 0
|
| 687 |
+
|
| 688 |
+
def select_best_person(self, person_boxes, frame_idx):
|
| 689 |
+
"""Select best person box for tracking consistency"""
|
| 690 |
+
if not person_boxes:
|
| 691 |
+
return None
|
| 692 |
+
|
| 693 |
+
if self.tracked_box is not None and frame_idx - self.last_frame < 10:
|
| 694 |
+
max_iou = 0
|
| 695 |
+
best_box = None
|
| 696 |
+
|
| 697 |
+
for box in person_boxes:
|
| 698 |
+
iou = self.calculate_iou(self.tracked_box, box)
|
| 699 |
+
if iou > max_iou:
|
| 700 |
+
max_iou = iou
|
| 701 |
+
best_box = box
|
| 702 |
+
|
| 703 |
+
if max_iou > self.iou_threshold:
|
| 704 |
+
self.tracked_box = best_box
|
| 705 |
+
self.last_frame = frame_idx
|
| 706 |
+
return best_box
|
| 707 |
+
|
| 708 |
+
best_box = max(person_boxes, key=lambda x: (x[2] - x[0]) * (x[3] - x[1]) * x[4])
|
| 709 |
+
self.tracked_box = best_box
|
| 710 |
+
self.last_frame = frame_idx
|
| 711 |
+
return best_box
|
| 712 |
+
|
| 713 |
+
|
| 714 |
+
class AudioGenerator:
|
| 715 |
+
"""Generate footstep audio"""
|
| 716 |
+
|
| 717 |
+
def __init__(self, sample_rate=44100):
|
| 718 |
+
self.sample_rate = sample_rate
|
| 719 |
+
|
| 720 |
+
def generate_footstep(self, aud_path):
|
| 721 |
+
arr, rate = extract_second_audio_librosa(
|
| 722 |
+
file_path=aud_path,
|
| 723 |
+
target_second=5,
|
| 724 |
+
sample_rate=self.sample_rate
|
| 725 |
+
)
|
| 726 |
+
return arr
|
| 727 |
+
|
| 728 |
+
def create_audio_track(self, events, aud_path, duration=0.3):
|
| 729 |
+
total_samples = int(duration * self.sample_rate)
|
| 730 |
+
audio_track = np.zeros(total_samples, dtype=np.float32)
|
| 731 |
+
|
| 732 |
+
for i, event in enumerate(events):
|
| 733 |
+
step_sound = self.generate_footstep(aud_path)
|
| 734 |
+
pitch_shift = 1.0 + (i % 5 - 2) * 0.03
|
| 735 |
+
indices = np.arange(len(step_sound)) * pitch_shift
|
| 736 |
+
indices = np.clip(indices, 0, len(step_sound) - 1).astype(int)
|
| 737 |
+
step_sound = step_sound[indices]
|
| 738 |
+
|
| 739 |
+
start_sample = int(event['time_seconds'] * self.sample_rate)
|
| 740 |
+
end_sample = min(start_sample + len(step_sound), total_samples)
|
| 741 |
+
sound_len = end_sample - start_sample
|
| 742 |
+
|
| 743 |
+
if sound_len > 0:
|
| 744 |
+
audio_track[start_sample:end_sample] += step_sound[:sound_len]
|
| 745 |
+
|
| 746 |
+
max_val = np.max(np.abs(audio_track))
|
| 747 |
+
if max_val > 0:
|
| 748 |
+
audio_track = audio_track / max_val * 0.8
|
| 749 |
+
|
| 750 |
+
return audio_track
|
| 751 |
+
|
| 752 |
+
|
| 753 |
+
def create_annotated_video(input_path, events, output_path, use_hybrid=True, progress_callback=None):
|
| 754 |
+
"""Create annotated video with hybrid detection visualization"""
|
| 755 |
+
|
| 756 |
+
try:
|
| 757 |
+
cap = cv2.VideoCapture(str(input_path))
|
| 758 |
+
if not cap.isOpened():
|
| 759 |
+
st.error("β Could not open input video file")
|
| 760 |
+
return False
|
| 761 |
+
|
| 762 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 763 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 764 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 765 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 766 |
+
|
| 767 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
| 768 |
+
out = cv2.VideoWriter(str(output_path), fourcc, fps, (width, height))
|
| 769 |
+
|
| 770 |
+
if not out.isOpened():
|
| 771 |
+
st.error("β Could not create output video file")
|
| 772 |
+
cap.release()
|
| 773 |
+
return False
|
| 774 |
+
|
| 775 |
+
event_frames = {e['frame']: e for e in events}
|
| 776 |
+
|
| 777 |
+
if use_hybrid:
|
| 778 |
+
yolo_model = YOLO('yolov8n.pt')
|
| 779 |
+
mp_pose = mp.solutions.pose
|
| 780 |
+
pose = mp_pose.Pose(
|
| 781 |
+
static_image_mode=False,
|
| 782 |
+
model_complexity=1,
|
| 783 |
+
smooth_landmarks=True,
|
| 784 |
+
min_detection_confidence=0.5,
|
| 785 |
+
min_tracking_confidence=0.5
|
| 786 |
+
)
|
| 787 |
+
else:
|
| 788 |
+
yolo_model = None
|
| 789 |
+
mp_pose = mp.solutions.pose
|
| 790 |
+
pose = mp_pose.Pose(
|
| 791 |
+
static_image_mode=False,
|
| 792 |
+
model_complexity=1,
|
| 793 |
+
smooth_landmarks=True,
|
| 794 |
+
min_detection_confidence=0.5,
|
| 795 |
+
min_tracking_confidence=0.5
|
| 796 |
+
)
|
| 797 |
+
|
| 798 |
+
frame_idx = 0
|
| 799 |
+
|
| 800 |
+
while cap.isOpened():
|
| 801 |
+
ret, frame = cap.read()
|
| 802 |
+
if not ret:
|
| 803 |
+
break
|
| 804 |
+
|
| 805 |
+
try:
|
| 806 |
+
if use_hybrid and yolo_model:
|
| 807 |
+
results = yolo_model(frame, conf=0.5, classes=[0], verbose=False)
|
| 808 |
+
for result in results:
|
| 809 |
+
boxes = result.boxes
|
| 810 |
+
for box in boxes:
|
| 811 |
+
x1, y1, x2, y2 = box.xyxy[0].cpu().numpy()
|
| 812 |
+
conf = box.conf[0].cpu().numpy()
|
| 813 |
+
|
| 814 |
+
cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)),
|
| 815 |
+
(255, 255, 0), 2)
|
| 816 |
+
cv2.putText(frame, f'YOLO: {conf:.2f}',
|
| 817 |
+
(int(x1), int(y1) - 10),
|
| 818 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 0), 2)
|
| 819 |
+
|
| 820 |
+
results = pose.process(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
| 821 |
+
|
| 822 |
+
if results.pose_landmarks:
|
| 823 |
+
mp.solutions.drawing_utils.draw_landmarks(
|
| 824 |
+
frame,
|
| 825 |
+
results.pose_landmarks,
|
| 826 |
+
mp_pose.POSE_CONNECTIONS,
|
| 827 |
+
landmark_drawing_spec=mp.solutions.drawing_utils.DrawingSpec(
|
| 828 |
+
color=(0, 255, 0), thickness=2, circle_radius=2
|
| 829 |
+
),
|
| 830 |
+
connection_drawing_spec=mp.solutions.drawing_utils.DrawingSpec(
|
| 831 |
+
color=(255, 255, 255), thickness=2
|
| 832 |
+
)
|
| 833 |
+
)
|
| 834 |
+
|
| 835 |
+
if frame_idx in event_frames:
|
| 836 |
+
event = event_frames[frame_idx]
|
| 837 |
+
|
| 838 |
+
banner_height = 100
|
| 839 |
+
cv2.rectangle(frame, (0, 0), (width, banner_height), (0, 0, 0), -1)
|
| 840 |
+
|
| 841 |
+
text = f"{event['foot']} HEEL STRIKE"
|
| 842 |
+
color = (0, 255, 0) if event['foot'] == 'LEFT' else (0, 100, 255)
|
| 843 |
+
|
| 844 |
+
cv2.putText(frame, text, (50, 50),
|
| 845 |
+
cv2.FONT_HERSHEY_SIMPLEX, 1.5, color, 3)
|
| 846 |
+
|
| 847 |
+
if 'confidence' in event:
|
| 848 |
+
conf_text = f"Conf: {event['confidence']:.2f}"
|
| 849 |
+
cv2.putText(frame, conf_text, (50, 85),
|
| 850 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2)
|
| 851 |
+
|
| 852 |
+
circle_x = 50 if event['foot'] == 'LEFT' else width - 50
|
| 853 |
+
cv2.circle(frame, (circle_x, height - 100), 40, color, -1)
|
| 854 |
+
|
| 855 |
+
if use_hybrid:
|
| 856 |
+
cv2.rectangle(frame, (width - 250, 10), (width - 10, 50), (102, 126, 234), -1)
|
| 857 |
+
cv2.putText(frame, "HYBRID MODE", (width - 240, 35),
|
| 858 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2)
|
| 859 |
+
|
| 860 |
+
time_seconds = frame_idx / fps
|
| 861 |
+
hours = int(time_seconds // 3600)
|
| 862 |
+
minutes = int((time_seconds % 3600) // 60)
|
| 863 |
+
seconds = int(time_seconds % 60)
|
| 864 |
+
frame_num = int((time_seconds * fps) % fps)
|
| 865 |
+
timecode = f"TC: {hours:02d}:{minutes:02d}:{seconds:02d}:{frame_num:02d}"
|
| 866 |
+
|
| 867 |
+
cv2.rectangle(frame, (0, height - 80), (400, height), (0, 0, 0), -1)
|
| 868 |
+
cv2.putText(frame, timecode, (10, height - 30),
|
| 869 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2)
|
| 870 |
+
cv2.putText(frame, f"Frame: {frame_idx}/{total_frames}", (10, height - 55),
|
| 871 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
|
| 872 |
+
|
| 873 |
+
out.write(frame)
|
| 874 |
+
frame_idx += 1
|
| 875 |
+
|
| 876 |
+
if progress_callback and frame_idx % 5 == 0:
|
| 877 |
+
progress = min(frame_idx / total_frames, 1.0)
|
| 878 |
+
progress_callback(progress)
|
| 879 |
+
|
| 880 |
+
except Exception as e:
|
| 881 |
+
st.warning(f"β οΈ Error processing frame {frame_idx}: {str(e)}")
|
| 882 |
+
frame_idx += 1
|
| 883 |
+
continue
|
| 884 |
+
|
| 885 |
+
cap.release()
|
| 886 |
+
out.release()
|
| 887 |
+
pose.close()
|
| 888 |
+
|
| 889 |
+
return True
|
| 890 |
+
|
| 891 |
+
except Exception as e:
|
| 892 |
+
st.error(f"β Video annotation failed: {str(e)}")
|
| 893 |
+
try:
|
| 894 |
+
cap.release()
|
| 895 |
+
out.release()
|
| 896 |
+
pose.close()
|
| 897 |
+
except:
|
| 898 |
+
pass
|
| 899 |
+
return False
|
| 900 |
+
|
| 901 |
+
|
| 902 |
+
def merge_audio_with_video(video_path, audio_track, sample_rate, output_path):
|
| 903 |
+
"""Merge audio with video using FFmpeg"""
|
| 904 |
+
|
| 905 |
+
temp_audio = tempfile.mktemp(suffix='.wav')
|
| 906 |
+
sf.write(temp_audio, audio_track, sample_rate)
|
| 907 |
+
|
| 908 |
+
ffmpeg_cmd = FFMPEG_PATH if FFMPEG_PATH else "ffmpeg"
|
| 909 |
+
|
| 910 |
+
cmd = [
|
| 911 |
+
ffmpeg_cmd, '-y',
|
| 912 |
+
'-i', str(video_path),
|
| 913 |
+
'-i', temp_audio,
|
| 914 |
+
'-map', '0:v', '-map', '1:a',
|
| 915 |
+
'-c:v', 'libx264', '-preset', 'medium',
|
| 916 |
+
'-c:a', 'aac', '-b:a', '192k',
|
| 917 |
+
'-shortest',
|
| 918 |
+
str(output_path)
|
| 919 |
+
]
|
| 920 |
+
|
| 921 |
+
try:
|
| 922 |
+
if FFMPEG_PATH is None:
|
| 923 |
+
st.warning("FFmpeg not found. Using fallback method.")
|
| 924 |
+
return None
|
| 925 |
+
|
| 926 |
+
result = subprocess.run(cmd, check=True, capture_output=True, text=True, timeout=30)
|
| 927 |
+
return True
|
| 928 |
+
|
| 929 |
+
except subprocess.CalledProcessError as e:
|
| 930 |
+
st.error(f"FFmpeg error: {e.stderr}")
|
| 931 |
+
return False
|
| 932 |
+
except subprocess.TimeoutExpired:
|
| 933 |
+
st.error("FFmpeg timed out")
|
| 934 |
+
return False
|
| 935 |
+
finally:
|
| 936 |
+
if os.path.exists(temp_audio):
|
| 937 |
+
os.remove(temp_audio)
|
| 938 |
+
|
| 939 |
+
|
| 940 |
+
def live_streaming_mode():
|
| 941 |
+
"""Live streaming mode with frame capture and real-time detection"""
|
| 942 |
+
|
| 943 |
+
st.markdown('<h2>πΉ Live Streaming Mode</h2>', unsafe_allow_html=True)
|
| 944 |
+
st.info("π₯ This mode allows real-time footstep detection with your device camera")
|
| 945 |
+
|
| 946 |
+
# Initialize session state
|
| 947 |
+
if 'floor_frame_captured' not in st.session_state:
|
| 948 |
+
st.session_state.floor_frame_captured = False
|
| 949 |
+
if 'audio_downloaded' not in st.session_state:
|
| 950 |
+
st.session_state.audio_downloaded = False
|
| 951 |
+
if 'live_audio_path' not in st.session_state:
|
| 952 |
+
st.session_state.live_audio_path = None
|
| 953 |
+
if 'live_detector' not in st.session_state:
|
| 954 |
+
st.session_state.live_detector = None
|
| 955 |
+
if 'camera_active' not in st.session_state:
|
| 956 |
+
st.session_state.camera_active = False
|
| 957 |
+
|
| 958 |
+
# Step 1: Capture floor frame
|
| 959 |
+
st.markdown("### Step 1: Capture Floor Frame πΈ")
|
| 960 |
+
st.write("Capture a single frame showing the floor surface for audio analysis")
|
| 961 |
+
|
| 962 |
+
col1, col2 = st.columns([2, 1])
|
| 963 |
+
|
| 964 |
+
with col1:
|
| 965 |
+
# Camera input for frame capture
|
| 966 |
+
camera_image = st.camera_input("Capture floor image", key="floor_capture")
|
| 967 |
+
|
| 968 |
+
if camera_image is not None and not st.session_state.floor_frame_captured:
|
| 969 |
+
# Save captured frame
|
| 970 |
+
image = Image.open(camera_image)
|
| 971 |
+
temp_frame_path = tempfile.mktemp(suffix='.jpg')
|
| 972 |
+
image.save(temp_frame_path)
|
| 973 |
+
st.session_state.floor_frame_path = temp_frame_path
|
| 974 |
+
|
| 975 |
+
# Display captured frame
|
| 976 |
+
st.image(image, caption="Captured Floor Frame", use_container_width=True)
|
| 977 |
+
|
| 978 |
+
if st.button("β
Confirm Floor Capture", type="primary", use_container_width=True):
|
| 979 |
+
st.session_state.floor_frame_captured = True
|
| 980 |
+
st.success("β
Floor frame captured successfully!")
|
| 981 |
+
st.rerun()
|
| 982 |
+
|
| 983 |
+
with col2:
|
| 984 |
+
if st.session_state.floor_frame_captured:
|
| 985 |
+
st.markdown('<div class="success-box">β
Floor Captured</div>', unsafe_allow_html=True)
|
| 986 |
+
else:
|
| 987 |
+
st.info("πΈ Capture floor frame to proceed")
|
| 988 |
+
|
| 989 |
+
# Step 2: Analyze and download audio
|
| 990 |
+
if st.session_state.floor_frame_captured and not st.session_state.audio_downloaded:
|
| 991 |
+
st.markdown("---")
|
| 992 |
+
st.markdown("### Step 2: Analyze Floor & Download Audio π")
|
| 993 |
+
|
| 994 |
+
col1, col2 = st.columns([2, 1])
|
| 995 |
+
|
| 996 |
+
with col1:
|
| 997 |
+
if st.button("π Analyze Floor & Generate Audio", type="primary", use_container_width=True):
|
| 998 |
+
with st.spinner("π Analyzing floor surface and generating audio..."):
|
| 999 |
+
try:
|
| 1000 |
+
# Create temporary video from frame for processing
|
| 1001 |
+
temp_video = tempfile.mktemp(suffix='.mp4')
|
| 1002 |
+
|
| 1003 |
+
# Create 1-second video from the captured frame
|
| 1004 |
+
img = cv2.imread(st.session_state.floor_frame_path)
|
| 1005 |
+
height, width = img.shape[:2]
|
| 1006 |
+
|
| 1007 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
| 1008 |
+
out = cv2.VideoWriter(temp_video, fourcc, 30, (width, height))
|
| 1009 |
+
|
| 1010 |
+
# Write 30 frames (1 second at 30fps)
|
| 1011 |
+
for _ in range(30):
|
| 1012 |
+
out.write(img)
|
| 1013 |
+
out.release()
|
| 1014 |
+
|
| 1015 |
+
# Process video for footstep audio
|
| 1016 |
+
st.info("π΅ Generating footstep audio based on floor analysis...")
|
| 1017 |
+
aud_name = process_video_for_footstep_audio(temp_video)
|
| 1018 |
+
aud_dict = main_sound(aud_name)
|
| 1019 |
+
aud_path = aud_dict['default'].replace(".%(ext)s", ".mp3")
|
| 1020 |
+
|
| 1021 |
+
st.session_state.live_audio_path = aud_path
|
| 1022 |
+
st.session_state.audio_downloaded = True
|
| 1023 |
+
|
| 1024 |
+
# Clean up temp video
|
| 1025 |
+
if os.path.exists(temp_video):
|
| 1026 |
+
os.remove(temp_video)
|
| 1027 |
+
|
| 1028 |
+
st.success("β
Audio generated successfully!")
|
| 1029 |
+
st.balloons()
|
| 1030 |
+
st.rerun()
|
| 1031 |
+
|
| 1032 |
+
except Exception as e:
|
| 1033 |
+
st.error(f"β Error generating audio: {str(e)}")
|
| 1034 |
+
|
| 1035 |
+
with col2:
|
| 1036 |
+
st.info("π΅ Audio will be generated based on floor type")
|
| 1037 |
+
|
| 1038 |
+
# Step 3: Initialize live detector
|
| 1039 |
+
if st.session_state.audio_downloaded and st.session_state.live_detector is None:
|
| 1040 |
+
st.markdown("---")
|
| 1041 |
+
st.markdown("### Step 3: Initialize Live Detection π")
|
| 1042 |
+
|
| 1043 |
+
col1, col2 = st.columns([2, 1])
|
| 1044 |
+
|
| 1045 |
+
with col1:
|
| 1046 |
+
sensitivity = st.select_slider(
|
| 1047 |
+
"Detection Sensitivity",
|
| 1048 |
+
options=['low', 'medium', 'high'],
|
| 1049 |
+
value='medium'
|
| 1050 |
+
)
|
| 1051 |
+
|
| 1052 |
+
yolo_conf = st.slider(
|
| 1053 |
+
"YOLO Confidence",
|
| 1054 |
+
min_value=0.1,
|
| 1055 |
+
max_value=0.9,
|
| 1056 |
+
value=0.5,
|
| 1057 |
+
step=0.05
|
| 1058 |
+
)
|
| 1059 |
+
|
| 1060 |
+
if st.button("π¬ Initialize Live Detector", type="primary", use_container_width=True):
|
| 1061 |
+
with st.spinner("βοΈ Initializing detector..."):
|
| 1062 |
+
try:
|
| 1063 |
+
detector = LiveFootstepDetector(
|
| 1064 |
+
audio_path=st.session_state.live_audio_path,
|
| 1065 |
+
sensitivity=sensitivity,
|
| 1066 |
+
yolo_conf=yolo_conf
|
| 1067 |
+
)
|
| 1068 |
+
st.session_state.live_detector = detector
|
| 1069 |
+
st.success("β
Live detector initialized!")
|
| 1070 |
+
st.rerun()
|
| 1071 |
+
except Exception as e:
|
| 1072 |
+
st.error(f"β Failed to initialize detector: {str(e)}")
|
| 1073 |
+
|
| 1074 |
+
with col2:
|
| 1075 |
+
st.info("π€ Configure detection parameters")
|
| 1076 |
+
|
| 1077 |
+
# Step 4: Start live detection
|
| 1078 |
+
if st.session_state.live_detector is not None:
|
| 1079 |
+
st.markdown("---")
|
| 1080 |
+
st.markdown('<div class="ready-badge">β
SYSTEM READY</div>', unsafe_allow_html=True)
|
| 1081 |
+
st.markdown("### Step 4: Live Detection π―")
|
| 1082 |
+
|
| 1083 |
+
col1, col2 = st.columns([3, 1])
|
| 1084 |
+
|
| 1085 |
+
with col1:
|
| 1086 |
+
st.write("πΉ **Camera is ready for live footstep detection**")
|
| 1087 |
+
st.write("πΆ Walk in front of the camera and hear footsteps in real-time!")
|
| 1088 |
+
|
| 1089 |
+
# Start/Stop controls
|
| 1090 |
+
col_a, col_b = st.columns(2)
|
| 1091 |
+
|
| 1092 |
+
with col_a:
|
| 1093 |
+
if not st.session_state.camera_active:
|
| 1094 |
+
if st.button("βΆοΈ Start Live Detection", type="primary", use_container_width=True):
|
| 1095 |
+
st.session_state.camera_active = True
|
| 1096 |
+
st.session_state.live_detector.start()
|
| 1097 |
+
st.rerun()
|
| 1098 |
+
|
| 1099 |
+
with col_b:
|
| 1100 |
+
if st.session_state.camera_active:
|
| 1101 |
+
if st.button("βΉοΈ Stop Detection", type="secondary", use_container_width=True):
|
| 1102 |
+
st.session_state.camera_active = False
|
| 1103 |
+
st.session_state.live_detector.stop()
|
| 1104 |
+
st.rerun()
|
| 1105 |
+
|
| 1106 |
+
with col2:
|
| 1107 |
+
if st.session_state.camera_active:
|
| 1108 |
+
st.markdown('<div class="live-indicator">π΄ LIVE</div>', unsafe_allow_html=True)
|
| 1109 |
+
else:
|
| 1110 |
+
st.info("βΈοΈ Paused")
|
| 1111 |
+
|
| 1112 |
+
# Live video feed
|
| 1113 |
+
if st.session_state.camera_active:
|
| 1114 |
+
st.markdown("---")
|
| 1115 |
+
|
| 1116 |
+
FRAME_WINDOW = st.image([])
|
| 1117 |
+
|
| 1118 |
+
cap = cv2.VideoCapture(0)
|
| 1119 |
+
|
| 1120 |
+
if not cap.isOpened():
|
| 1121 |
+
st.error("β Cannot access camera. Please check permissions.")
|
| 1122 |
+
st.session_state.camera_active = False
|
| 1123 |
+
else:
|
| 1124 |
+
st.info("πΉ Live feed active - Walk to generate footsteps!")
|
| 1125 |
+
|
| 1126 |
+
# Statistics
|
| 1127 |
+
step_counter = st.empty()
|
| 1128 |
+
left_steps = 0
|
| 1129 |
+
right_steps = 0
|
| 1130 |
+
|
| 1131 |
+
try:
|
| 1132 |
+
while st.session_state.camera_active:
|
| 1133 |
+
ret, frame = cap.read()
|
| 1134 |
+
|
| 1135 |
+
if not ret:
|
| 1136 |
+
st.error("β Failed to read from camera")
|
| 1137 |
+
break
|
| 1138 |
+
|
| 1139 |
+
# Process frame
|
| 1140 |
+
processed_frame, detected_foot = st.session_state.live_detector.process_frame(frame)
|
| 1141 |
+
|
| 1142 |
+
# Update counters
|
| 1143 |
+
if detected_foot == 'LEFT':
|
| 1144 |
+
left_steps += 1
|
| 1145 |
+
elif detected_foot == 'RIGHT':
|
| 1146 |
+
right_steps += 1
|
| 1147 |
+
|
| 1148 |
+
# Display frame
|
| 1149 |
+
FRAME_WINDOW.image(cv2.cvtColor(processed_frame, cv2.COLOR_BGR2RGB))
|
| 1150 |
+
|
| 1151 |
+
# Update statistics
|
| 1152 |
+
step_counter.metric("Total Steps Detected", left_steps + right_steps,
|
| 1153 |
+
f"L: {left_steps} | R: {right_steps}")
|
| 1154 |
+
|
| 1155 |
+
# Check if user stopped
|
| 1156 |
+
if not st.session_state.camera_active:
|
| 1157 |
+
break
|
| 1158 |
+
|
| 1159 |
+
time.sleep(0.033) # ~30 FPS
|
| 1160 |
+
|
| 1161 |
+
except Exception as e:
|
| 1162 |
+
st.error(f"β Error during live detection: {str(e)}")
|
| 1163 |
+
|
| 1164 |
+
finally:
|
| 1165 |
+
cap.release()
|
| 1166 |
+
st.session_state.live_detector.stop()
|
| 1167 |
+
|
| 1168 |
+
# Reset button
|
| 1169 |
+
st.markdown("---")
|
| 1170 |
+
if st.button("π Reset All", use_container_width=True):
|
| 1171 |
+
st.session_state.floor_frame_captured = False
|
| 1172 |
+
st.session_state.audio_downloaded = False
|
| 1173 |
+
st.session_state.live_audio_path = None
|
| 1174 |
+
st.session_state.live_detector = None
|
| 1175 |
+
st.session_state.camera_active = False
|
| 1176 |
+
st.rerun()
|
| 1177 |
+
|
| 1178 |
+
|
| 1179 |
+
def video_upload_mode():
|
| 1180 |
+
"""Original video upload mode"""
|
| 1181 |
+
|
| 1182 |
+
st.markdown('<h2>π€ Video Upload Mode</h2>', unsafe_allow_html=True)
|
| 1183 |
+
|
| 1184 |
+
# Sidebar configuration
|
| 1185 |
+
sensitivity = st.sidebar.select_slider(
|
| 1186 |
+
"Footstep Sensitivity",
|
| 1187 |
+
options=['low', 'medium', 'high'],
|
| 1188 |
+
value='medium',
|
| 1189 |
+
help="Higher sensitivity detects more subtle footsteps"
|
| 1190 |
+
)
|
| 1191 |
+
|
| 1192 |
+
yolo_conf = st.sidebar.slider(
|
| 1193 |
+
"YOLO Confidence",
|
| 1194 |
+
min_value=0.1,
|
| 1195 |
+
max_value=0.9,
|
| 1196 |
+
value=0.5,
|
| 1197 |
+
step=0.05,
|
| 1198 |
+
help="Confidence threshold for YOLO person detection"
|
| 1199 |
+
)
|
| 1200 |
+
|
| 1201 |
+
surface_type = st.sidebar.selectbox(
|
| 1202 |
+
"Surface Type",
|
| 1203 |
+
['concrete', 'wood', 'grass', 'gravel', 'metal'],
|
| 1204 |
+
help="Select surface for audio generation"
|
| 1205 |
+
)
|
| 1206 |
+
|
| 1207 |
+
use_hybrid = st.sidebar.checkbox(
|
| 1208 |
+
"Enable Hybrid Mode",
|
| 1209 |
+
value=True,
|
| 1210 |
+
help="Use YOLO for person detection + MediaPipe for pose estimation"
|
| 1211 |
+
)
|
| 1212 |
+
|
| 1213 |
+
create_annotated = st.sidebar.checkbox("Create Annotated Video", value=True)
|
| 1214 |
+
add_audio = st.sidebar.checkbox("Add Footstep Audio", value=True)
|
| 1215 |
+
|
| 1216 |
+
# File uploader
|
| 1217 |
+
uploaded_file = st.file_uploader(
|
| 1218 |
+
"π€ Upload Video File",
|
| 1219 |
+
type=['mp4', 'avi', 'mov', 'mkv'],
|
| 1220 |
+
help="Upload a video file to detect footsteps"
|
| 1221 |
+
)
|
| 1222 |
+
|
| 1223 |
+
if uploaded_file:
|
| 1224 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as tmp_file:
|
| 1225 |
+
tmp_file.write(uploaded_file.read())
|
| 1226 |
+
video_path = tmp_file.name
|
| 1227 |
+
|
| 1228 |
+
col1, col2 = st.columns([2, 1])
|
| 1229 |
+
|
| 1230 |
+
with col1:
|
| 1231 |
+
st.subheader("πΉ Input Video")
|
| 1232 |
+
st.video(video_path)
|
| 1233 |
+
|
| 1234 |
+
with col2:
|
| 1235 |
+
st.subheader("βΉοΈ Video Info")
|
| 1236 |
+
cap = cv2.VideoCapture(video_path)
|
| 1237 |
+
video_info = {
|
| 1238 |
+
"Duration": f"{cap.get(cv2.CAP_PROP_FRAME_COUNT) / cap.get(cv2.CAP_PROP_FPS):.2f}s",
|
| 1239 |
+
"FPS": f"{cap.get(cv2.CAP_PROP_FPS):.2f}",
|
| 1240 |
+
"Resolution": f"{int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))}x{int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))}",
|
| 1241 |
+
"Frames": int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 1242 |
+
}
|
| 1243 |
+
cap.release()
|
| 1244 |
+
|
| 1245 |
+
for key, value in video_info.items():
|
| 1246 |
+
st.metric(key, value)
|
| 1247 |
+
|
| 1248 |
+
if use_hybrid:
|
| 1249 |
+
st.success("π€ Hybrid Mode Active")
|
| 1250 |
+
else:
|
| 1251 |
+
st.info("π MediaPipe Only")
|
| 1252 |
+
|
| 1253 |
+
st.markdown("---")
|
| 1254 |
+
|
| 1255 |
+
if st.button("π Process Video", type="primary", use_container_width=True):
|
| 1256 |
+
|
| 1257 |
+
if use_hybrid:
|
| 1258 |
+
st.info("π Running Hybrid YOLO-MediaPipe Pipeline...")
|
| 1259 |
+
pipeline = HybridFootstepDetectionPipeline(
|
| 1260 |
+
fps=float(video_info["FPS"]),
|
| 1261 |
+
sensitivity=sensitivity,
|
| 1262 |
+
yolo_conf=yolo_conf
|
| 1263 |
+
)
|
| 1264 |
+
else:
|
| 1265 |
+
st.info("π Running MediaPipe-Only Pipeline...")
|
| 1266 |
+
pipeline = HybridFootstepDetectionPipeline(
|
| 1267 |
+
fps=float(video_info["FPS"]),
|
| 1268 |
+
sensitivity=sensitivity,
|
| 1269 |
+
yolo_conf=yolo_conf
|
| 1270 |
+
)
|
| 1271 |
+
|
| 1272 |
+
with st.spinner("π Detecting footsteps..."):
|
| 1273 |
+
progress_bar = st.progress(0)
|
| 1274 |
+
status_text = st.empty()
|
| 1275 |
+
|
| 1276 |
+
def update_progress(val):
|
| 1277 |
+
progress_bar.progress(val)
|
| 1278 |
+
status_text.text(f"Processing: {int(val * 100)}%")
|
| 1279 |
+
|
| 1280 |
+
results = pipeline.process_video(video_path, update_progress)
|
| 1281 |
+
st.session_state['results'] = results
|
| 1282 |
+
st.session_state['video_path'] = video_path
|
| 1283 |
+
st.session_state['use_hybrid'] = use_hybrid
|
| 1284 |
+
|
| 1285 |
+
progress_bar.empty()
|
| 1286 |
+
status_text.empty()
|
| 1287 |
+
|
| 1288 |
+
if results:
|
| 1289 |
+
st.markdown('<div class="success-box">β
Footstep detection complete!</div>',
|
| 1290 |
+
unsafe_allow_html=True)
|
| 1291 |
+
st.success(f"Detected **{len(results['events'])}** footstep events")
|
| 1292 |
+
|
| 1293 |
+
if 'detection_stats' in results:
|
| 1294 |
+
stats = results['detection_stats']
|
| 1295 |
+
col1, col2, col3 = st.columns(3)
|
| 1296 |
+
col1.metric("YOLO Detections",
|
| 1297 |
+
f"{stats['yolo_detections']}/{stats['total_frames']}")
|
| 1298 |
+
col2.metric("Pose Detections",
|
| 1299 |
+
f"{stats['pose_detections']}/{stats['total_frames']}")
|
| 1300 |
+
col3.metric("Success Rate",
|
| 1301 |
+
f"{stats['pose_detections'] / stats['total_frames'] * 100:.1f}%")
|
| 1302 |
+
|
| 1303 |
+
# Display results (existing code continues...)
|
| 1304 |
+
if 'results' in st.session_state:
|
| 1305 |
+
results = st.session_state['results']
|
| 1306 |
+
|
| 1307 |
+
st.markdown("---")
|
| 1308 |
+
st.subheader("π Detection Results")
|
| 1309 |
+
|
| 1310 |
+
col1, col2, col3, col4 = st.columns(4)
|
| 1311 |
+
|
| 1312 |
+
left_count = len([e for e in results['events'] if e['foot'] == 'LEFT'])
|
| 1313 |
+
right_count = len([e for e in results['events'] if e['foot'] == 'RIGHT'])
|
| 1314 |
+
avg_cadence = len(results['events']) / (results['total_frames'] / results['fps']) * 60
|
| 1315 |
+
avg_conf = np.mean([e.get('confidence', 0.5) for e in results['events']])
|
| 1316 |
+
|
| 1317 |
+
col1.metric("Total Events", len(results['events']))
|
| 1318 |
+
col2.metric("Left Foot", left_count)
|
| 1319 |
+
col3.metric("Right Foot", right_count)
|
| 1320 |
+
col4.metric("Avg Confidence", f"{avg_conf:.2f}")
|
| 1321 |
+
|
| 1322 |
+
st.metric("Average Cadence", f"{avg_cadence:.1f} steps/min")
|
| 1323 |
+
|
| 1324 |
+
st.subheader("π Detected Events")
|
| 1325 |
+
events_df = pd.DataFrame(results['events'])
|
| 1326 |
+
|
| 1327 |
+
if not events_df.empty:
|
| 1328 |
+
st.dataframe(
|
| 1329 |
+
events_df.style.apply(
|
| 1330 |
+
lambda x: ['background-color: #e8f5e9' if x.foot == 'LEFT'
|
| 1331 |
+
else 'background-color: #fff3e0' for _ in x],
|
| 1332 |
+
axis=1
|
| 1333 |
+
),
|
| 1334 |
+
use_container_width=True,
|
| 1335 |
+
height=300
|
| 1336 |
+
)
|
| 1337 |
+
|
| 1338 |
+
st.subheader("πΎ Export Options")
|
| 1339 |
+
|
| 1340 |
+
col1, col2, col3 = st.columns(3)
|
| 1341 |
+
|
| 1342 |
+
with col1:
|
| 1343 |
+
csv = events_df.to_csv(index=False)
|
| 1344 |
+
st.download_button(
|
| 1345 |
+
"π Download CSV",
|
| 1346 |
+
csv,
|
| 1347 |
+
f"footsteps_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv",
|
| 1348 |
+
"text/csv",
|
| 1349 |
+
use_container_width=True
|
| 1350 |
+
)
|
| 1351 |
+
|
| 1352 |
+
with col2:
|
| 1353 |
+
json_data = json.dumps(results['events'], indent=2)
|
| 1354 |
+
st.download_button(
|
| 1355 |
+
"π Download JSON",
|
| 1356 |
+
json_data,
|
| 1357 |
+
f"footsteps_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json",
|
| 1358 |
+
"application/json",
|
| 1359 |
+
use_container_width=True
|
| 1360 |
+
)
|
| 1361 |
+
|
| 1362 |
+
with col3:
|
| 1363 |
+
timecode_text = "\n".join([
|
| 1364 |
+
f"{e['timecode']}\t{e['foot']}\t{e['event']}\t{e.get('confidence', 0.5):.2f}"
|
| 1365 |
+
for e in results['events']
|
| 1366 |
+
])
|
| 1367 |
+
st.download_button(
|
| 1368 |
+
"β±οΈ Download Timecode",
|
| 1369 |
+
timecode_text,
|
| 1370 |
+
f"timecode_{datetime.now().strftime('%Y%m%d_%H%M%S')}.txt",
|
| 1371 |
+
"text/plain",
|
| 1372 |
+
use_container_width=True
|
| 1373 |
+
)
|
| 1374 |
+
|
| 1375 |
+
st.markdown("---")
|
| 1376 |
+
st.subheader("π₯ Generate Output Video")
|
| 1377 |
+
|
| 1378 |
+
col1, col2 = st.columns(2)
|
| 1379 |
+
|
| 1380 |
+
with col1:
|
| 1381 |
+
if create_annotated and st.button("Create Annotated Video", use_container_width=True):
|
| 1382 |
+
with st.spinner("Creating annotated video..."):
|
| 1383 |
+
annotated_path = tempfile.mktemp(suffix='_annotated.mp4')
|
| 1384 |
+
progress_bar = st.progress(0)
|
| 1385 |
+
|
| 1386 |
+
success = create_annotated_video(
|
| 1387 |
+
st.session_state['video_path'],
|
| 1388 |
+
results['events'],
|
| 1389 |
+
annotated_path,
|
| 1390 |
+
use_hybrid=st.session_state.get('use_hybrid', False),
|
| 1391 |
+
progress_callback=lambda v: progress_bar.progress(v)
|
| 1392 |
+
)
|
| 1393 |
+
|
| 1394 |
+
if success:
|
| 1395 |
+
st.session_state['annotated_video'] = annotated_path
|
| 1396 |
+
progress_bar.empty()
|
| 1397 |
+
st.success("β
Annotated video ready!")
|
| 1398 |
+
else:
|
| 1399 |
+
st.error("β Failed to create annotated video")
|
| 1400 |
+
|
| 1401 |
+
with col2:
|
| 1402 |
+
if add_audio and st.button("Generate with Audio", use_container_width=True):
|
| 1403 |
+
with st.spinner("Generating audio and merging..."):
|
| 1404 |
+
audio_gen = AudioGenerator()
|
| 1405 |
+
aud_name = process_video_for_footstep_audio(str(st.session_state['video_path']))
|
| 1406 |
+
aud_path = main_sound(aud_name)
|
| 1407 |
+
aud_path = aud_path['default'].replace(".%(ext)s", ".mp3")
|
| 1408 |
+
duration = results['total_frames'] / results['fps']
|
| 1409 |
+
audio_track = audio_gen.create_audio_track(
|
| 1410 |
+
results['events'],
|
| 1411 |
+
aud_path,
|
| 1412 |
+
duration
|
| 1413 |
+
)
|
| 1414 |
+
|
| 1415 |
+
temp_video = tempfile.mktemp(suffix='_temp.mp4')
|
| 1416 |
+
progress_bar = st.progress(0)
|
| 1417 |
+
|
| 1418 |
+
create_annotated_video(
|
| 1419 |
+
st.session_state['video_path'],
|
| 1420 |
+
results['events'],
|
| 1421 |
+
temp_video,
|
| 1422 |
+
use_hybrid=st.session_state.get('use_hybrid', False),
|
| 1423 |
+
progress_callback=lambda v: progress_bar.progress(v * 0.7)
|
| 1424 |
+
)
|
| 1425 |
+
|
| 1426 |
+
final_output = tempfile.mktemp(suffix='_final.mp4')
|
| 1427 |
+
success = merge_audio_with_video(
|
| 1428 |
+
temp_video,
|
| 1429 |
+
audio_track,
|
| 1430 |
+
44100,
|
| 1431 |
+
final_output
|
| 1432 |
+
)
|
| 1433 |
+
|
| 1434 |
+
progress_bar.progress(1.0)
|
| 1435 |
+
progress_bar.empty()
|
| 1436 |
+
|
| 1437 |
+
if success:
|
| 1438 |
+
st.session_state['final_video'] = final_output
|
| 1439 |
+
st.success("β
Video with audio ready!")
|
| 1440 |
+
else:
|
| 1441 |
+
st.error("β Failed to merge audio")
|
| 1442 |
+
|
| 1443 |
+
if 'annotated_video' in st.session_state:
|
| 1444 |
+
st.markdown("---")
|
| 1445 |
+
st.subheader("πΊ Annotated Video")
|
| 1446 |
+
st.video(st.session_state['annotated_video'])
|
| 1447 |
+
|
| 1448 |
+
with open(st.session_state['annotated_video'], 'rb') as f:
|
| 1449 |
+
st.download_button(
|
| 1450 |
+
"π₯ Download Annotated Video",
|
| 1451 |
+
f,
|
| 1452 |
+
f"annotated_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp4",
|
| 1453 |
+
"video/mp4",
|
| 1454 |
+
use_container_width=True
|
| 1455 |
+
)
|
| 1456 |
+
|
| 1457 |
+
if 'final_video' in st.session_state:
|
| 1458 |
+
st.markdown("---")
|
| 1459 |
+
st.subheader("π Final Video with Audio")
|
| 1460 |
+
st.video(st.session_state['final_video'])
|
| 1461 |
+
|
| 1462 |
+
with open(st.session_state['final_video'], 'rb') as f:
|
| 1463 |
+
st.download_button(
|
| 1464 |
+
"π₯ Download Final Video",
|
| 1465 |
+
f,
|
| 1466 |
+
f"final_with_audio_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp4",
|
| 1467 |
+
"video/mp4",
|
| 1468 |
+
use_container_width=True
|
| 1469 |
+
)
|
| 1470 |
+
|
| 1471 |
+
|
| 1472 |
+
def main():
|
| 1473 |
+
st.markdown('<h1 class="main-header">π¬ Hybrid YOLO-MediaPipe Footstep Detection</h1>',
|
| 1474 |
+
unsafe_allow_html=True)
|
| 1475 |
+
st.markdown('<div class="hybrid-badge">π YOLO Person Detection + MediaPipe Pose Estimation</div>',
|
| 1476 |
+
unsafe_allow_html=True)
|
| 1477 |
+
st.markdown("### Advanced AI-Powered Foley Tool with Dual-Stage Detection Pipeline")
|
| 1478 |
+
|
| 1479 |
+
# Mode selection
|
| 1480 |
+
st.markdown("---")
|
| 1481 |
+
st.markdown("## π― Select Mode")
|
| 1482 |
+
|
| 1483 |
+
col1, col2 = st.columns(2)
|
| 1484 |
+
|
| 1485 |
+
with col1:
|
| 1486 |
+
if st.button("π€ Video Upload Mode", use_container_width=True, type="primary"):
|
| 1487 |
+
st.session_state.mode = 'upload'
|
| 1488 |
+
|
| 1489 |
+
with col2:
|
| 1490 |
+
if st.button("πΉ Live Streaming Mode", use_container_width=True, type="primary"):
|
| 1491 |
+
st.session_state.mode = 'live'
|
| 1492 |
+
|
| 1493 |
+
# Initialize mode
|
| 1494 |
+
if 'mode' not in st.session_state:
|
| 1495 |
+
st.session_state.mode = 'upload'
|
| 1496 |
+
|
| 1497 |
+
st.markdown("---")
|
| 1498 |
+
|
| 1499 |
+
# Display selected mode
|
| 1500 |
+
if st.session_state.mode == 'upload':
|
| 1501 |
+
video_upload_mode()
|
| 1502 |
+
else:
|
| 1503 |
+
live_streaming_mode()
|
| 1504 |
+
|
| 1505 |
+
# Sidebar info
|
| 1506 |
+
with st.sidebar:
|
| 1507 |
+
st.markdown("---")
|
| 1508 |
+
st.markdown(f"### π― Current Mode: **{st.session_state.mode.upper()}**")
|
| 1509 |
+
|
| 1510 |
+
if st.session_state.mode == 'live':
|
| 1511 |
+
st.markdown("---")
|
| 1512 |
+
st.markdown("### πΉ Live Mode Guide")
|
| 1513 |
+
st.markdown("""
|
| 1514 |
+
**Steps:**
|
| 1515 |
+
1. πΈ **Capture Floor Frame**
|
| 1516 |
+
- Point camera at floor
|
| 1517 |
+
- Capture clear image
|
| 1518 |
+
|
| 1519 |
+
2. π **Generate Audio**
|
| 1520 |
+
- AI analyzes floor type
|
| 1521 |
+
- Downloads matching sound
|
| 1522 |
+
|
| 1523 |
+
3. β
**System Ready**
|
| 1524 |
+
- Real-time detection active
|
| 1525 |
+
- Walk and hear footsteps!
|
| 1526 |
+
|
| 1527 |
+
**Tips:**
|
| 1528 |
+
- Good lighting needed
|
| 1529 |
+
- Clear floor view
|
| 1530 |
+
- Stand 2-3 meters away
|
| 1531 |
+
- Walk naturally
|
| 1532 |
+
""")
|
| 1533 |
+
|
| 1534 |
+
st.markdown("---")
|
| 1535 |
+
st.markdown("### π€ Hybrid Pipeline")
|
| 1536 |
+
st.markdown("""
|
| 1537 |
+
**Stage 1: YOLO Detection**
|
| 1538 |
+
- Detects person in frame
|
| 1539 |
+
- Provides bounding box
|
| 1540 |
+
- Tracks across frames
|
| 1541 |
+
|
| 1542 |
+
**Stage 2: MediaPipe Pose**
|
| 1543 |
+
- Estimates pose on detected region
|
| 1544 |
+
- Extracts heel landmarks
|
| 1545 |
+
- Higher accuracy & speed
|
| 1546 |
+
|
| 1547 |
+
**Benefits:**
|
| 1548 |
+
- β
More robust detection
|
| 1549 |
+
- β
Better occlusion handling
|
| 1550 |
+
- β
Faster processing
|
| 1551 |
+
- β
Improved accuracy
|
| 1552 |
+
""")
|
| 1553 |
+
|
| 1554 |
+
st.markdown("---")
|
| 1555 |
+
st.markdown("### βΉοΈ System Info")
|
| 1556 |
+
st.markdown("""
|
| 1557 |
+
**Detection Engines:**
|
| 1558 |
+
- YOLOv8 (Person Detection)
|
| 1559 |
+
- MediaPipe Pose v2 (Pose Estimation)
|
| 1560 |
+
|
| 1561 |
+
**Features:**
|
| 1562 |
+
- Dual-stage AI pipeline
|
| 1563 |
+
- Person tracking
|
| 1564 |
+
- Frame-accurate timing
|
| 1565 |
+
- Confidence scoring
|
| 1566 |
+
- Real-time live detection
|
| 1567 |
+
- Autonomous audio generation
|
| 1568 |
+
""")
|
| 1569 |
+
|
| 1570 |
+
|
| 1571 |
+
if __name__ == "__main__":
|
| 1572 |
+
main()
|
reel.py
ADDED
|
@@ -0,0 +1,1573 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
'''aud_name = process_video_for_footstep_audio(temp_video)
|
| 2 |
+
aud_dict = main_sound(aud_name)
|
| 3 |
+
aud_path = aud_dict['default'].replace(".%(ext)s", ".mp3")'''
|
| 4 |
+
|
| 5 |
+
import pandas as pd
|
| 6 |
+
import streamlit as st
|
| 7 |
+
import cv2
|
| 8 |
+
import numpy as np
|
| 9 |
+
import mediapipe as mp
|
| 10 |
+
from pathlib import Path
|
| 11 |
+
from scipy.signal import find_peaks, savgol_filter
|
| 12 |
+
import json
|
| 13 |
+
import subprocess
|
| 14 |
+
import os
|
| 15 |
+
import soundfile as sf
|
| 16 |
+
from datetime import datetime
|
| 17 |
+
import tempfile
|
| 18 |
+
from ultralytics import YOLO
|
| 19 |
+
from agent import process_video_for_footstep_audio
|
| 20 |
+
from sound_agent import main_sound
|
| 21 |
+
from qsec import extract_second_audio_librosa
|
| 22 |
+
import threading
|
| 23 |
+
import queue
|
| 24 |
+
import time
|
| 25 |
+
from PIL import Image
|
| 26 |
+
import io
|
| 27 |
+
|
| 28 |
+
# Suppress TensorFlow warnings
|
| 29 |
+
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
| 30 |
+
import absl.logging
|
| 31 |
+
|
| 32 |
+
absl.logging.set_verbosity(absl.logging.ERROR)
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def get_ffmpeg_path():
|
| 36 |
+
"""Get FFmpeg path with multiple fallback options"""
|
| 37 |
+
possible_paths = [
|
| 38 |
+
"ffmpeg", # Try system ffmpeg first (Docker/Linux)
|
| 39 |
+
r"C:\Users\abhiv\OneDrive\Desktop\agentic ai\SoundFeet\ffmpeg-7.1-essentials_build\bin\ffmpeg.exe", # Local Windows
|
| 40 |
+
"./ffmpeg-7.1-essentials_build/bin/ffmpeg.exe", # Relative path
|
| 41 |
+
]
|
| 42 |
+
|
| 43 |
+
for path in possible_paths:
|
| 44 |
+
if path == "ffmpeg":
|
| 45 |
+
try:
|
| 46 |
+
result = subprocess.run([path, '-version'], capture_output=True, timeout=5)
|
| 47 |
+
if result.returncode == 0:
|
| 48 |
+
return path
|
| 49 |
+
except:
|
| 50 |
+
continue
|
| 51 |
+
else:
|
| 52 |
+
if os.path.exists(path):
|
| 53 |
+
return path
|
| 54 |
+
return None
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
FFMPEG_PATH = get_ffmpeg_path()
|
| 58 |
+
|
| 59 |
+
# Streamlit Configuration
|
| 60 |
+
st.set_page_config(
|
| 61 |
+
page_title="Hybrid YOLO-MediaPipe Footstep Detection",
|
| 62 |
+
page_icon="π¬",
|
| 63 |
+
layout="wide",
|
| 64 |
+
initial_sidebar_state="expanded"
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
st.markdown("""
|
| 68 |
+
<style>
|
| 69 |
+
.main-header {
|
| 70 |
+
font-size: 2.5rem;
|
| 71 |
+
font-weight: 700;
|
| 72 |
+
background: linear-gradient(90deg, #667eea 0%, #764ba2 100%);
|
| 73 |
+
-webkit-background-clip: text;
|
| 74 |
+
-webkit-text-fill-color: transparent;
|
| 75 |
+
margin-bottom: 2rem;
|
| 76 |
+
}
|
| 77 |
+
.metric-card {
|
| 78 |
+
background: #f0f2f6;
|
| 79 |
+
padding: 1rem;
|
| 80 |
+
border-radius: 0.5rem;
|
| 81 |
+
border-left: 4px solid #667eea;
|
| 82 |
+
}
|
| 83 |
+
.success-box {
|
| 84 |
+
padding: 1rem;
|
| 85 |
+
background: #d4edda;
|
| 86 |
+
border: 1px solid #c3e6cb;
|
| 87 |
+
border-radius: 0.5rem;
|
| 88 |
+
color: #155724;
|
| 89 |
+
}
|
| 90 |
+
.hybrid-badge {
|
| 91 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 92 |
+
color: white;
|
| 93 |
+
padding: 0.5rem 1rem;
|
| 94 |
+
border-radius: 20px;
|
| 95 |
+
display: inline-block;
|
| 96 |
+
font-weight: 600;
|
| 97 |
+
margin: 1rem 0;
|
| 98 |
+
}
|
| 99 |
+
.live-indicator {
|
| 100 |
+
background: #dc3545;
|
| 101 |
+
color: white;
|
| 102 |
+
padding: 0.5rem 1rem;
|
| 103 |
+
border-radius: 20px;
|
| 104 |
+
display: inline-block;
|
| 105 |
+
font-weight: 600;
|
| 106 |
+
animation: pulse 1.5s infinite;
|
| 107 |
+
}
|
| 108 |
+
@keyframes pulse {
|
| 109 |
+
0%, 100% { opacity: 1; }
|
| 110 |
+
50% { opacity: 0.5; }
|
| 111 |
+
}
|
| 112 |
+
.ready-badge {
|
| 113 |
+
background: #28a745;
|
| 114 |
+
color: white;
|
| 115 |
+
padding: 0.5rem 1rem;
|
| 116 |
+
border-radius: 20px;
|
| 117 |
+
display: inline-block;
|
| 118 |
+
font-weight: 600;
|
| 119 |
+
}
|
| 120 |
+
</style>
|
| 121 |
+
""", unsafe_allow_html=True)
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
class LiveFootstepDetector:
|
| 125 |
+
"""Real-time footstep detection for live camera feed"""
|
| 126 |
+
|
| 127 |
+
def __init__(self, audio_path, sensitivity='medium', yolo_conf=0.5):
|
| 128 |
+
self.audio_path = audio_path
|
| 129 |
+
self.sensitivity = sensitivity
|
| 130 |
+
self.yolo_conf = yolo_conf
|
| 131 |
+
self.running = False
|
| 132 |
+
self.audio_ready = False
|
| 133 |
+
|
| 134 |
+
# Load footstep audio
|
| 135 |
+
try:
|
| 136 |
+
self.footstep_audio, self.sample_rate = extract_second_audio_librosa(
|
| 137 |
+
file_path=audio_path,
|
| 138 |
+
target_second=5,
|
| 139 |
+
sample_rate=44100
|
| 140 |
+
)
|
| 141 |
+
self.audio_ready = True
|
| 142 |
+
except Exception as e:
|
| 143 |
+
st.error(f"Failed to load audio: {str(e)}")
|
| 144 |
+
self.audio_ready = False
|
| 145 |
+
|
| 146 |
+
# Initialize detection models
|
| 147 |
+
try:
|
| 148 |
+
self.yolo_model = YOLO('yolov8n.pt')
|
| 149 |
+
self.mp_pose = mp.solutions.pose
|
| 150 |
+
self.pose = self.mp_pose.Pose(
|
| 151 |
+
static_image_mode=False,
|
| 152 |
+
model_complexity=1,
|
| 153 |
+
smooth_landmarks=True,
|
| 154 |
+
min_detection_confidence=0.5,
|
| 155 |
+
min_tracking_confidence=0.5
|
| 156 |
+
)
|
| 157 |
+
except Exception as e:
|
| 158 |
+
st.error(f"Failed to initialize models: {str(e)}")
|
| 159 |
+
return
|
| 160 |
+
|
| 161 |
+
# Landmark indices
|
| 162 |
+
self.LEFT_HEEL = 29
|
| 163 |
+
self.RIGHT_HEEL = 30
|
| 164 |
+
|
| 165 |
+
# Detection thresholds
|
| 166 |
+
self.thresholds = {
|
| 167 |
+
'low': {'prominence': 0.02, 'velocity_threshold': 0.015},
|
| 168 |
+
'medium': {'prominence': 0.015, 'velocity_threshold': 0.012},
|
| 169 |
+
'high': {'prominence': 0.01, 'velocity_threshold': 0.010}
|
| 170 |
+
}[sensitivity]
|
| 171 |
+
|
| 172 |
+
# Tracking state
|
| 173 |
+
self.prev_left_y = None
|
| 174 |
+
self.prev_right_y = None
|
| 175 |
+
self.prev_time = None
|
| 176 |
+
self.left_buffer = []
|
| 177 |
+
self.right_buffer = []
|
| 178 |
+
self.buffer_size = 10
|
| 179 |
+
|
| 180 |
+
# Audio playback
|
| 181 |
+
self.audio_queue = queue.Queue()
|
| 182 |
+
self.audio_thread = None
|
| 183 |
+
|
| 184 |
+
def start_audio_playback(self):
|
| 185 |
+
"""Start audio playback thread"""
|
| 186 |
+
if not self.audio_ready:
|
| 187 |
+
return
|
| 188 |
+
|
| 189 |
+
def play_audio():
|
| 190 |
+
import pyaudio
|
| 191 |
+
p = pyaudio.PyAudio()
|
| 192 |
+
stream = p.open(
|
| 193 |
+
format=pyaudio.paFloat32,
|
| 194 |
+
channels=1,
|
| 195 |
+
rate=self.sample_rate,
|
| 196 |
+
output=True
|
| 197 |
+
)
|
| 198 |
+
|
| 199 |
+
while self.running:
|
| 200 |
+
try:
|
| 201 |
+
foot = self.audio_queue.get(timeout=0.1)
|
| 202 |
+
# Play footstep sound
|
| 203 |
+
stream.write(self.footstep_audio.astype(np.float32).tobytes())
|
| 204 |
+
except queue.Empty:
|
| 205 |
+
continue
|
| 206 |
+
except Exception as e:
|
| 207 |
+
print(f"Audio playback error: {e}")
|
| 208 |
+
|
| 209 |
+
stream.stop_stream()
|
| 210 |
+
stream.close()
|
| 211 |
+
p.terminate()
|
| 212 |
+
|
| 213 |
+
self.audio_thread = threading.Thread(target=play_audio, daemon=True)
|
| 214 |
+
self.audio_thread.start()
|
| 215 |
+
|
| 216 |
+
def detect_heel_strike(self, current_y, prev_y, foot_buffer):
|
| 217 |
+
"""Detect heel strike based on vertical velocity and position"""
|
| 218 |
+
if prev_y is None:
|
| 219 |
+
return False
|
| 220 |
+
|
| 221 |
+
# Calculate vertical velocity (downward is positive)
|
| 222 |
+
velocity = current_y - prev_y
|
| 223 |
+
|
| 224 |
+
# Add to buffer
|
| 225 |
+
foot_buffer.append(current_y)
|
| 226 |
+
if len(foot_buffer) > self.buffer_size:
|
| 227 |
+
foot_buffer.pop(0)
|
| 228 |
+
|
| 229 |
+
if len(foot_buffer) < 5:
|
| 230 |
+
return False
|
| 231 |
+
|
| 232 |
+
# Detect strike: downward movement followed by stabilization
|
| 233 |
+
# Current position is low (heel on ground)
|
| 234 |
+
# Recent movement was downward
|
| 235 |
+
# Velocity is slowing (strike impact)
|
| 236 |
+
recent_velocities = [foot_buffer[i + 1] - foot_buffer[i]
|
| 237 |
+
for i in range(len(foot_buffer) - 1)]
|
| 238 |
+
|
| 239 |
+
avg_velocity = np.mean(recent_velocities[-3:]) if len(recent_velocities) >= 3 else 0
|
| 240 |
+
|
| 241 |
+
is_strike = (
|
| 242 |
+
current_y > 0.7 and # Heel is low in frame
|
| 243 |
+
velocity > self.thresholds['velocity_threshold'] and # Moving down
|
| 244 |
+
avg_velocity < velocity * 0.5 # Velocity decreasing (impact)
|
| 245 |
+
)
|
| 246 |
+
|
| 247 |
+
return is_strike
|
| 248 |
+
|
| 249 |
+
def process_frame(self, frame):
|
| 250 |
+
"""Process single frame and detect footsteps"""
|
| 251 |
+
if not self.audio_ready:
|
| 252 |
+
return frame, None
|
| 253 |
+
|
| 254 |
+
detected_foot = None
|
| 255 |
+
|
| 256 |
+
try:
|
| 257 |
+
# YOLO detection
|
| 258 |
+
results = self.yolo_model(frame, conf=self.yolo_conf, classes=[0], verbose=False)
|
| 259 |
+
|
| 260 |
+
person_detected = False
|
| 261 |
+
bbox = None
|
| 262 |
+
|
| 263 |
+
for result in results:
|
| 264 |
+
boxes = result.boxes
|
| 265 |
+
if len(boxes) > 0:
|
| 266 |
+
person_detected = True
|
| 267 |
+
box = boxes[0] # Take first person
|
| 268 |
+
x1, y1, x2, y2 = box.xyxy[0].cpu().numpy()
|
| 269 |
+
bbox = (int(x1), int(y1), int(x2), int(y2))
|
| 270 |
+
|
| 271 |
+
# Draw YOLO bbox
|
| 272 |
+
cv2.rectangle(frame, (bbox[0], bbox[1]), (bbox[2], bbox[3]),
|
| 273 |
+
(255, 255, 0), 2)
|
| 274 |
+
break
|
| 275 |
+
|
| 276 |
+
# MediaPipe pose estimation
|
| 277 |
+
if person_detected and bbox:
|
| 278 |
+
# Crop to person region with padding
|
| 279 |
+
x1, y1, x2, y2 = bbox
|
| 280 |
+
pad = 20
|
| 281 |
+
x1 = max(0, x1 - pad)
|
| 282 |
+
y1 = max(0, y1 - pad)
|
| 283 |
+
x2 = min(frame.shape[1], x2 + pad)
|
| 284 |
+
y2 = min(frame.shape[0], y2 + pad)
|
| 285 |
+
|
| 286 |
+
cropped = frame[y1:y2, x1:x2]
|
| 287 |
+
rgb_frame = cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB)
|
| 288 |
+
pose_results = self.pose.process(rgb_frame)
|
| 289 |
+
|
| 290 |
+
if pose_results.pose_landmarks:
|
| 291 |
+
landmarks = pose_results.pose_landmarks.landmark
|
| 292 |
+
|
| 293 |
+
# Get heel positions (adjusted to full frame)
|
| 294 |
+
left_heel = landmarks[self.LEFT_HEEL]
|
| 295 |
+
right_heel = landmarks[self.RIGHT_HEEL]
|
| 296 |
+
|
| 297 |
+
left_y = (left_heel.y * (y2 - y1) + y1) / frame.shape[0]
|
| 298 |
+
right_y = (right_heel.y * (y2 - y1) + y1) / frame.shape[0]
|
| 299 |
+
|
| 300 |
+
# Detect strikes
|
| 301 |
+
left_strike = self.detect_heel_strike(
|
| 302 |
+
left_y, self.prev_left_y, self.left_buffer
|
| 303 |
+
)
|
| 304 |
+
right_strike = self.detect_heel_strike(
|
| 305 |
+
right_y, self.prev_right_y, self.right_buffer
|
| 306 |
+
)
|
| 307 |
+
|
| 308 |
+
if left_strike:
|
| 309 |
+
detected_foot = 'LEFT'
|
| 310 |
+
self.audio_queue.put('LEFT')
|
| 311 |
+
elif right_strike:
|
| 312 |
+
detected_foot = 'RIGHT'
|
| 313 |
+
self.audio_queue.put('RIGHT')
|
| 314 |
+
|
| 315 |
+
# Update previous positions
|
| 316 |
+
self.prev_left_y = left_y
|
| 317 |
+
self.prev_right_y = right_y
|
| 318 |
+
|
| 319 |
+
# Draw skeleton on full frame
|
| 320 |
+
for landmark in landmarks:
|
| 321 |
+
x = int((landmark.x * (x2 - x1) + x1))
|
| 322 |
+
y = int((landmark.y * (y2 - y1) + y1))
|
| 323 |
+
cv2.circle(frame, (x, y), 3, (0, 255, 0), -1)
|
| 324 |
+
|
| 325 |
+
# Highlight heels
|
| 326 |
+
left_heel_x = int((left_heel.x * (x2 - x1) + x1))
|
| 327 |
+
left_heel_y = int((left_heel.y * (y2 - y1) + y1))
|
| 328 |
+
right_heel_x = int((right_heel.x * (x2 - x1) + x1))
|
| 329 |
+
right_heel_y = int((right_heel.y * (y2 - y1) + y1))
|
| 330 |
+
|
| 331 |
+
cv2.circle(frame, (left_heel_x, left_heel_y), 8, (0, 255, 0), -1)
|
| 332 |
+
cv2.circle(frame, (right_heel_x, right_heel_y), 8, (0, 100, 255), -1)
|
| 333 |
+
|
| 334 |
+
if detected_foot:
|
| 335 |
+
# Show strike indicator
|
| 336 |
+
heel_x = left_heel_x if detected_foot == 'LEFT' else right_heel_x
|
| 337 |
+
heel_y = left_heel_y if detected_foot == 'LEFT' else right_heel_y
|
| 338 |
+
color = (0, 255, 0) if detected_foot == 'LEFT' else (0, 100, 255)
|
| 339 |
+
|
| 340 |
+
cv2.circle(frame, (heel_x, heel_y), 30, color, 3)
|
| 341 |
+
cv2.putText(frame, f"{detected_foot} STRIKE!",
|
| 342 |
+
(heel_x - 50, heel_y - 40),
|
| 343 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.7, color, 2)
|
| 344 |
+
|
| 345 |
+
# Draw status
|
| 346 |
+
status_text = "READY" if self.audio_ready else "NO AUDIO"
|
| 347 |
+
status_color = (0, 255, 0) if self.audio_ready else (0, 0, 255)
|
| 348 |
+
cv2.rectangle(frame, (10, 10), (150, 50), (0, 0, 0), -1)
|
| 349 |
+
cv2.putText(frame, status_text, (20, 35),
|
| 350 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.7, status_color, 2)
|
| 351 |
+
|
| 352 |
+
except Exception as e:
|
| 353 |
+
print(f"Frame processing error: {e}")
|
| 354 |
+
|
| 355 |
+
return frame, detected_foot
|
| 356 |
+
|
| 357 |
+
def start(self):
|
| 358 |
+
"""Start the detector"""
|
| 359 |
+
self.running = True
|
| 360 |
+
self.start_audio_playback()
|
| 361 |
+
|
| 362 |
+
def stop(self):
|
| 363 |
+
"""Stop the detector"""
|
| 364 |
+
self.running = False
|
| 365 |
+
if self.audio_thread:
|
| 366 |
+
self.audio_thread.join(timeout=2)
|
| 367 |
+
|
| 368 |
+
|
| 369 |
+
class HybridFootstepDetectionPipeline:
|
| 370 |
+
"""
|
| 371 |
+
Hybrid Detection Pipeline for video files:
|
| 372 |
+
1. YOLO detects person bounding boxes
|
| 373 |
+
2. MediaPipe estimates pose on detected regions
|
| 374 |
+
3. Track footsteps with improved accuracy
|
| 375 |
+
"""
|
| 376 |
+
|
| 377 |
+
def __init__(self, fps=30, sensitivity='medium', yolo_conf=0.5):
|
| 378 |
+
self.fps = fps
|
| 379 |
+
self.sensitivity = sensitivity
|
| 380 |
+
self.yolo_conf = yolo_conf
|
| 381 |
+
|
| 382 |
+
# Initialize YOLO detector
|
| 383 |
+
try:
|
| 384 |
+
self.yolo_model = YOLO('yolov8n.pt')
|
| 385 |
+
st.success("β
YOLO detector loaded successfully")
|
| 386 |
+
except Exception as e:
|
| 387 |
+
st.warning(f"β οΈ YOLO loading issue: {str(e)}. Downloading model...")
|
| 388 |
+
try:
|
| 389 |
+
self.yolo_model = YOLO('yolov8n.pt')
|
| 390 |
+
st.success("β
YOLO detector loaded successfully")
|
| 391 |
+
except Exception as e2:
|
| 392 |
+
st.error(f"β Failed to load YOLO: {str(e2)}")
|
| 393 |
+
self.yolo_model = None
|
| 394 |
+
|
| 395 |
+
# Initialize MediaPipe pose estimator
|
| 396 |
+
try:
|
| 397 |
+
self.mp_pose = mp.solutions.pose
|
| 398 |
+
self.pose = self.mp_pose.Pose(
|
| 399 |
+
static_image_mode=False,
|
| 400 |
+
model_complexity=1,
|
| 401 |
+
smooth_landmarks=True,
|
| 402 |
+
min_detection_confidence=0.5,
|
| 403 |
+
min_tracking_confidence=0.5
|
| 404 |
+
)
|
| 405 |
+
st.success("β
MediaPipe pose estimator loaded successfully")
|
| 406 |
+
except Exception as e:
|
| 407 |
+
st.error(f"β Failed to initialize MediaPipe: {str(e)}")
|
| 408 |
+
self.pose = None
|
| 409 |
+
|
| 410 |
+
# Landmark indices
|
| 411 |
+
self.LEFT_HEEL = 29
|
| 412 |
+
self.RIGHT_HEEL = 30
|
| 413 |
+
self.LEFT_ANKLE = 27
|
| 414 |
+
self.RIGHT_ANKLE = 28
|
| 415 |
+
|
| 416 |
+
# Detection thresholds
|
| 417 |
+
self.thresholds = {
|
| 418 |
+
'low': {'prominence': 0.02, 'min_interval': 0.4},
|
| 419 |
+
'medium': {'prominence': 0.015, 'min_interval': 0.3},
|
| 420 |
+
'high': {'prominence': 0.01, 'min_interval': 0.25}
|
| 421 |
+
}[sensitivity]
|
| 422 |
+
|
| 423 |
+
# Tracking state
|
| 424 |
+
self.person_tracker = PersonTracker()
|
| 425 |
+
|
| 426 |
+
def detect_person_yolo(self, frame):
|
| 427 |
+
"""Detect person using YOLO"""
|
| 428 |
+
if self.yolo_model is None:
|
| 429 |
+
return []
|
| 430 |
+
|
| 431 |
+
try:
|
| 432 |
+
results = self.yolo_model(frame, conf=self.yolo_conf, classes=[0], verbose=False)
|
| 433 |
+
|
| 434 |
+
person_boxes = []
|
| 435 |
+
for result in results:
|
| 436 |
+
boxes = result.boxes
|
| 437 |
+
for box in boxes:
|
| 438 |
+
x1, y1, x2, y2 = box.xyxy[0].cpu().numpy()
|
| 439 |
+
conf = box.conf[0].cpu().numpy()
|
| 440 |
+
person_boxes.append((int(x1), int(y1), int(x2), int(y2), float(conf)))
|
| 441 |
+
|
| 442 |
+
return person_boxes
|
| 443 |
+
except Exception as e:
|
| 444 |
+
st.warning(f"YOLO detection failed: {str(e)}")
|
| 445 |
+
return []
|
| 446 |
+
|
| 447 |
+
def estimate_pose_mediapipe(self, frame, bbox=None):
|
| 448 |
+
"""Estimate pose using MediaPipe on specified region"""
|
| 449 |
+
if self.pose is None:
|
| 450 |
+
return None
|
| 451 |
+
|
| 452 |
+
try:
|
| 453 |
+
if bbox is not None:
|
| 454 |
+
x1, y1, x2, y2 = bbox
|
| 455 |
+
pad = 20
|
| 456 |
+
x1 = max(0, x1 - pad)
|
| 457 |
+
y1 = max(0, y1 - pad)
|
| 458 |
+
x2 = min(frame.shape[1], x2 + pad)
|
| 459 |
+
y2 = min(frame.shape[0], y2 + pad)
|
| 460 |
+
|
| 461 |
+
cropped = frame[y1:y2, x1:x2]
|
| 462 |
+
if cropped.size == 0:
|
| 463 |
+
return None
|
| 464 |
+
|
| 465 |
+
rgb_frame = cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB)
|
| 466 |
+
results = self.pose.process(rgb_frame)
|
| 467 |
+
|
| 468 |
+
if results.pose_landmarks:
|
| 469 |
+
for landmark in results.pose_landmarks.landmark:
|
| 470 |
+
landmark.x = (landmark.x * (x2 - x1) + x1) / frame.shape[1]
|
| 471 |
+
landmark.y = (landmark.y * (y2 - y1) + y1) / frame.shape[0]
|
| 472 |
+
|
| 473 |
+
return results
|
| 474 |
+
else:
|
| 475 |
+
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 476 |
+
return self.pose.process(rgb_frame)
|
| 477 |
+
|
| 478 |
+
except Exception as e:
|
| 479 |
+
return None
|
| 480 |
+
|
| 481 |
+
def process_video(self, video_path, progress_callback=None):
|
| 482 |
+
"""Process video with hybrid YOLO-MediaPipe pipeline"""
|
| 483 |
+
|
| 484 |
+
if self.yolo_model is None or self.pose is None:
|
| 485 |
+
st.error("β Detection models not available")
|
| 486 |
+
return None
|
| 487 |
+
|
| 488 |
+
cap = cv2.VideoCapture(str(video_path))
|
| 489 |
+
if not cap.isOpened():
|
| 490 |
+
st.error("β Could not open video file")
|
| 491 |
+
return None
|
| 492 |
+
|
| 493 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 494 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 495 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 496 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 497 |
+
|
| 498 |
+
if fps <= 0 or total_frames <= 0:
|
| 499 |
+
st.error("β Invalid video properties")
|
| 500 |
+
cap.release()
|
| 501 |
+
return None
|
| 502 |
+
|
| 503 |
+
left_positions = []
|
| 504 |
+
right_positions = []
|
| 505 |
+
detection_confidence = []
|
| 506 |
+
frame_idx = 0
|
| 507 |
+
|
| 508 |
+
yolo_detections = 0
|
| 509 |
+
pose_detections = 0
|
| 510 |
+
|
| 511 |
+
st.info(f"π Processing with Hybrid Pipeline: {total_frames} frames")
|
| 512 |
+
|
| 513 |
+
try:
|
| 514 |
+
while cap.isOpened():
|
| 515 |
+
ret, frame = cap.read()
|
| 516 |
+
if not ret:
|
| 517 |
+
break
|
| 518 |
+
|
| 519 |
+
person_boxes = self.detect_person_yolo(frame)
|
| 520 |
+
|
| 521 |
+
if person_boxes:
|
| 522 |
+
yolo_detections += 1
|
| 523 |
+
best_box = self.person_tracker.select_best_person(person_boxes, frame_idx)
|
| 524 |
+
bbox = best_box[:4]
|
| 525 |
+
results = self.estimate_pose_mediapipe(frame, bbox)
|
| 526 |
+
|
| 527 |
+
if results and results.pose_landmarks:
|
| 528 |
+
pose_detections += 1
|
| 529 |
+
landmarks = results.pose_landmarks.landmark
|
| 530 |
+
|
| 531 |
+
left_y = landmarks[self.LEFT_HEEL].y
|
| 532 |
+
right_y = landmarks[self.RIGHT_HEEL].y
|
| 533 |
+
conf = (landmarks[self.LEFT_HEEL].visibility +
|
| 534 |
+
landmarks[self.RIGHT_HEEL].visibility) / 2
|
| 535 |
+
|
| 536 |
+
left_positions.append(left_y)
|
| 537 |
+
right_positions.append(right_y)
|
| 538 |
+
detection_confidence.append(conf)
|
| 539 |
+
else:
|
| 540 |
+
left_positions.append(np.nan)
|
| 541 |
+
right_positions.append(np.nan)
|
| 542 |
+
detection_confidence.append(0.0)
|
| 543 |
+
else:
|
| 544 |
+
results = self.estimate_pose_mediapipe(frame, bbox=None)
|
| 545 |
+
|
| 546 |
+
if results and results.pose_landmarks:
|
| 547 |
+
pose_detections += 1
|
| 548 |
+
landmarks = results.pose_landmarks.landmark
|
| 549 |
+
|
| 550 |
+
left_positions.append(landmarks[self.LEFT_HEEL].y)
|
| 551 |
+
right_positions.append(landmarks[self.RIGHT_HEEL].y)
|
| 552 |
+
detection_confidence.append(0.5)
|
| 553 |
+
else:
|
| 554 |
+
left_positions.append(np.nan)
|
| 555 |
+
right_positions.append(np.nan)
|
| 556 |
+
detection_confidence.append(0.0)
|
| 557 |
+
|
| 558 |
+
frame_idx += 1
|
| 559 |
+
|
| 560 |
+
if progress_callback and frame_idx % 10 == 0:
|
| 561 |
+
progress = min(frame_idx / total_frames, 1.0)
|
| 562 |
+
progress_callback(progress)
|
| 563 |
+
|
| 564 |
+
except Exception as e:
|
| 565 |
+
st.error(f"β Video processing error: {str(e)}")
|
| 566 |
+
cap.release()
|
| 567 |
+
return None
|
| 568 |
+
|
| 569 |
+
cap.release()
|
| 570 |
+
|
| 571 |
+
st.info(
|
| 572 |
+
f"π YOLO detections: {yolo_detections}/{total_frames} frames ({yolo_detections / total_frames * 100:.1f}%)")
|
| 573 |
+
st.info(
|
| 574 |
+
f"π Pose detections: {pose_detections}/{total_frames} frames ({pose_detections / total_frames * 100:.1f}%)")
|
| 575 |
+
|
| 576 |
+
if len(left_positions) == 0:
|
| 577 |
+
st.error("β No frames processed successfully")
|
| 578 |
+
return None
|
| 579 |
+
|
| 580 |
+
try:
|
| 581 |
+
left_series = pd.Series(left_positions).interpolate(method='linear')
|
| 582 |
+
left_series = left_series.bfill().ffill()
|
| 583 |
+
left_positions = left_series.values
|
| 584 |
+
|
| 585 |
+
right_series = pd.Series(right_positions).interpolate(method='linear')
|
| 586 |
+
right_series = right_series.bfill().ffill()
|
| 587 |
+
right_positions = right_series.values
|
| 588 |
+
|
| 589 |
+
if len(left_positions) > 5:
|
| 590 |
+
window = min(11, len(left_positions) if len(left_positions) % 2 == 1 else len(left_positions) - 1)
|
| 591 |
+
if window >= 3:
|
| 592 |
+
left_positions = savgol_filter(left_positions, window, 2)
|
| 593 |
+
right_positions = savgol_filter(right_positions, window, 2)
|
| 594 |
+
|
| 595 |
+
left_strikes = self._detect_strikes(left_positions, fps)
|
| 596 |
+
right_strikes = self._detect_strikes(right_positions, fps)
|
| 597 |
+
|
| 598 |
+
events = []
|
| 599 |
+
|
| 600 |
+
for frame in left_strikes:
|
| 601 |
+
events.append({
|
| 602 |
+
'frame': int(frame),
|
| 603 |
+
'timecode': self._frames_to_smpte(frame, fps),
|
| 604 |
+
'foot': 'LEFT',
|
| 605 |
+
'event': 'HEEL_STRIKE',
|
| 606 |
+
'time_seconds': frame / fps,
|
| 607 |
+
'confidence': detection_confidence[int(frame)] if int(frame) < len(detection_confidence) else 0.5
|
| 608 |
+
})
|
| 609 |
+
|
| 610 |
+
for frame in right_strikes:
|
| 611 |
+
events.append({
|
| 612 |
+
'frame': int(frame),
|
| 613 |
+
'timecode': self._frames_to_smpte(frame, fps),
|
| 614 |
+
'foot': 'RIGHT',
|
| 615 |
+
'event': 'HEEL_STRIKE',
|
| 616 |
+
'time_seconds': frame / fps,
|
| 617 |
+
'confidence': detection_confidence[int(frame)] if int(frame) < len(detection_confidence) else 0.5
|
| 618 |
+
})
|
| 619 |
+
|
| 620 |
+
events = sorted(events, key=lambda x: x['frame'])
|
| 621 |
+
|
| 622 |
+
return {
|
| 623 |
+
'events': events,
|
| 624 |
+
'fps': fps,
|
| 625 |
+
'total_frames': total_frames,
|
| 626 |
+
'width': width,
|
| 627 |
+
'height': height,
|
| 628 |
+
'left_positions': left_positions.tolist() if hasattr(left_positions, 'tolist') else left_positions,
|
| 629 |
+
'right_positions': right_positions.tolist() if hasattr(right_positions, 'tolist') else right_positions,
|
| 630 |
+
'detection_stats': {
|
| 631 |
+
'yolo_detections': yolo_detections,
|
| 632 |
+
'pose_detections': pose_detections,
|
| 633 |
+
'total_frames': total_frames
|
| 634 |
+
}
|
| 635 |
+
}
|
| 636 |
+
|
| 637 |
+
except Exception as e:
|
| 638 |
+
st.error(f"β Data processing error: {str(e)}")
|
| 639 |
+
return None
|
| 640 |
+
|
| 641 |
+
def _detect_strikes(self, positions, fps):
|
| 642 |
+
"""Detect heel strikes from position data"""
|
| 643 |
+
try:
|
| 644 |
+
peaks, _ = find_peaks(
|
| 645 |
+
positions,
|
| 646 |
+
prominence=self.thresholds['prominence'],
|
| 647 |
+
distance=int(fps * self.thresholds['min_interval']),
|
| 648 |
+
height=0.7
|
| 649 |
+
)
|
| 650 |
+
return peaks
|
| 651 |
+
except Exception as e:
|
| 652 |
+
st.warning(f"Peak detection failed: {str(e)}")
|
| 653 |
+
return np.array([])
|
| 654 |
+
|
| 655 |
+
def _frames_to_smpte(self, frame, fps):
|
| 656 |
+
"""Convert frame number to SMPTE timecode"""
|
| 657 |
+
total_seconds = frame / fps
|
| 658 |
+
hours = int(total_seconds // 3600)
|
| 659 |
+
minutes = int((total_seconds % 3600) // 60)
|
| 660 |
+
seconds = int(total_seconds % 60)
|
| 661 |
+
frames = int((total_seconds * fps) % fps)
|
| 662 |
+
return f"{hours:02d}:{minutes:02d}:{seconds:02d}:{frames:02d}"
|
| 663 |
+
|
| 664 |
+
|
| 665 |
+
class PersonTracker:
|
| 666 |
+
"""Track person across frames for consistency"""
|
| 667 |
+
|
| 668 |
+
def __init__(self, iou_threshold=0.3):
|
| 669 |
+
self.tracked_box = None
|
| 670 |
+
self.last_frame = -1
|
| 671 |
+
self.iou_threshold = iou_threshold
|
| 672 |
+
|
| 673 |
+
def calculate_iou(self, box1, box2):
|
| 674 |
+
"""Calculate IoU between two bounding boxes"""
|
| 675 |
+
x1_1, y1_1, x2_1, y2_1 = box1[:4]
|
| 676 |
+
x1_2, y1_2, x2_2, y2_2 = box2[:4]
|
| 677 |
+
|
| 678 |
+
xi1 = max(x1_1, x1_2)
|
| 679 |
+
yi1 = max(y1_1, y1_2)
|
| 680 |
+
xi2 = min(x2_1, x2_2)
|
| 681 |
+
yi2 = min(y2_1, y2_2)
|
| 682 |
+
|
| 683 |
+
inter_area = max(0, xi2 - xi1) * max(0, yi2 - yi1)
|
| 684 |
+
|
| 685 |
+
box1_area = (x2_1 - x1_1) * (y2_1 - y1_1)
|
| 686 |
+
box2_area = (x2_2 - x1_2) * (y2_2 - y1_2)
|
| 687 |
+
|
| 688 |
+
union_area = box1_area + box2_area - inter_area
|
| 689 |
+
|
| 690 |
+
return inter_area / union_area if union_area > 0 else 0
|
| 691 |
+
|
| 692 |
+
def select_best_person(self, person_boxes, frame_idx):
|
| 693 |
+
"""Select best person box for tracking consistency"""
|
| 694 |
+
if not person_boxes:
|
| 695 |
+
return None
|
| 696 |
+
|
| 697 |
+
if self.tracked_box is not None and frame_idx - self.last_frame < 10:
|
| 698 |
+
max_iou = 0
|
| 699 |
+
best_box = None
|
| 700 |
+
|
| 701 |
+
for box in person_boxes:
|
| 702 |
+
iou = self.calculate_iou(self.tracked_box, box)
|
| 703 |
+
if iou > max_iou:
|
| 704 |
+
max_iou = iou
|
| 705 |
+
best_box = box
|
| 706 |
+
|
| 707 |
+
if max_iou > self.iou_threshold:
|
| 708 |
+
self.tracked_box = best_box
|
| 709 |
+
self.last_frame = frame_idx
|
| 710 |
+
return best_box
|
| 711 |
+
|
| 712 |
+
best_box = max(person_boxes, key=lambda x: (x[2] - x[0]) * (x[3] - x[1]) * x[4])
|
| 713 |
+
self.tracked_box = best_box
|
| 714 |
+
self.last_frame = frame_idx
|
| 715 |
+
return best_box
|
| 716 |
+
|
| 717 |
+
|
| 718 |
+
class AudioGenerator:
|
| 719 |
+
"""Generate footstep audio"""
|
| 720 |
+
|
| 721 |
+
def __init__(self, sample_rate=44100):
|
| 722 |
+
self.sample_rate = sample_rate
|
| 723 |
+
|
| 724 |
+
def generate_footstep(self, aud_path):
|
| 725 |
+
arr, rate = extract_second_audio_librosa(
|
| 726 |
+
file_path=aud_path,
|
| 727 |
+
target_second=5,
|
| 728 |
+
sample_rate=self.sample_rate
|
| 729 |
+
)
|
| 730 |
+
return arr
|
| 731 |
+
|
| 732 |
+
def create_audio_track(self, events, aud_path, duration=0.3):
|
| 733 |
+
total_samples = int(duration * self.sample_rate)
|
| 734 |
+
audio_track = np.zeros(total_samples, dtype=np.float32)
|
| 735 |
+
|
| 736 |
+
for i, event in enumerate(events):
|
| 737 |
+
step_sound = self.generate_footstep(aud_path)
|
| 738 |
+
pitch_shift = 1.0 + (i % 5 - 2) * 0.03
|
| 739 |
+
indices = np.arange(len(step_sound)) * pitch_shift
|
| 740 |
+
indices = np.clip(indices, 0, len(step_sound) - 1).astype(int)
|
| 741 |
+
step_sound = step_sound[indices]
|
| 742 |
+
|
| 743 |
+
start_sample = int(event['time_seconds'] * self.sample_rate)
|
| 744 |
+
end_sample = min(start_sample + len(step_sound), total_samples)
|
| 745 |
+
sound_len = end_sample - start_sample
|
| 746 |
+
|
| 747 |
+
if sound_len > 0:
|
| 748 |
+
audio_track[start_sample:end_sample] += step_sound[:sound_len]
|
| 749 |
+
|
| 750 |
+
max_val = np.max(np.abs(audio_track))
|
| 751 |
+
if max_val > 0:
|
| 752 |
+
audio_track = audio_track / max_val * 0.8
|
| 753 |
+
|
| 754 |
+
return audio_track
|
| 755 |
+
|
| 756 |
+
|
| 757 |
+
def create_annotated_video(input_path, events, output_path, use_hybrid=True, progress_callback=None):
|
| 758 |
+
"""Create annotated video with hybrid detection visualization"""
|
| 759 |
+
|
| 760 |
+
try:
|
| 761 |
+
cap = cv2.VideoCapture(str(input_path))
|
| 762 |
+
if not cap.isOpened():
|
| 763 |
+
st.error("β Could not open input video file")
|
| 764 |
+
return False
|
| 765 |
+
|
| 766 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 767 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 768 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 769 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 770 |
+
|
| 771 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
| 772 |
+
out = cv2.VideoWriter(str(output_path), fourcc, fps, (width, height))
|
| 773 |
+
|
| 774 |
+
if not out.isOpened():
|
| 775 |
+
st.error("β Could not create output video file")
|
| 776 |
+
cap.release()
|
| 777 |
+
return False
|
| 778 |
+
|
| 779 |
+
event_frames = {e['frame']: e for e in events}
|
| 780 |
+
|
| 781 |
+
if use_hybrid:
|
| 782 |
+
yolo_model = YOLO('yolov8n.pt')
|
| 783 |
+
mp_pose = mp.solutions.pose
|
| 784 |
+
pose = mp_pose.Pose(
|
| 785 |
+
static_image_mode=False,
|
| 786 |
+
model_complexity=1,
|
| 787 |
+
smooth_landmarks=True,
|
| 788 |
+
min_detection_confidence=0.5,
|
| 789 |
+
min_tracking_confidence=0.5
|
| 790 |
+
)
|
| 791 |
+
else:
|
| 792 |
+
yolo_model = None
|
| 793 |
+
mp_pose = mp.solutions.pose
|
| 794 |
+
pose = mp_pose.Pose(
|
| 795 |
+
static_image_mode=False,
|
| 796 |
+
model_complexity=1,
|
| 797 |
+
smooth_landmarks=True,
|
| 798 |
+
min_detection_confidence=0.5,
|
| 799 |
+
min_tracking_confidence=0.5
|
| 800 |
+
)
|
| 801 |
+
|
| 802 |
+
frame_idx = 0
|
| 803 |
+
|
| 804 |
+
while cap.isOpened():
|
| 805 |
+
ret, frame = cap.read()
|
| 806 |
+
if not ret:
|
| 807 |
+
break
|
| 808 |
+
|
| 809 |
+
try:
|
| 810 |
+
if use_hybrid and yolo_model:
|
| 811 |
+
results = yolo_model(frame, conf=0.5, classes=[0], verbose=False)
|
| 812 |
+
for result in results:
|
| 813 |
+
boxes = result.boxes
|
| 814 |
+
for box in boxes:
|
| 815 |
+
x1, y1, x2, y2 = box.xyxy[0].cpu().numpy()
|
| 816 |
+
conf = box.conf[0].cpu().numpy()
|
| 817 |
+
|
| 818 |
+
cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)),
|
| 819 |
+
(255, 255, 0), 2)
|
| 820 |
+
cv2.putText(frame, f'YOLO: {conf:.2f}',
|
| 821 |
+
(int(x1), int(y1) - 10),
|
| 822 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 0), 2)
|
| 823 |
+
|
| 824 |
+
results = pose.process(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
| 825 |
+
|
| 826 |
+
if results.pose_landmarks:
|
| 827 |
+
mp.solutions.drawing_utils.draw_landmarks(
|
| 828 |
+
frame,
|
| 829 |
+
results.pose_landmarks,
|
| 830 |
+
mp_pose.POSE_CONNECTIONS,
|
| 831 |
+
landmark_drawing_spec=mp.solutions.drawing_utils.DrawingSpec(
|
| 832 |
+
color=(0, 255, 0), thickness=2, circle_radius=2
|
| 833 |
+
),
|
| 834 |
+
connection_drawing_spec=mp.solutions.drawing_utils.DrawingSpec(
|
| 835 |
+
color=(255, 255, 255), thickness=2
|
| 836 |
+
)
|
| 837 |
+
)
|
| 838 |
+
|
| 839 |
+
if frame_idx in event_frames:
|
| 840 |
+
event = event_frames[frame_idx]
|
| 841 |
+
|
| 842 |
+
banner_height = 100
|
| 843 |
+
cv2.rectangle(frame, (0, 0), (width, banner_height), (0, 0, 0), -1)
|
| 844 |
+
|
| 845 |
+
text = f"{event['foot']} HEEL STRIKE"
|
| 846 |
+
color = (0, 255, 0) if event['foot'] == 'LEFT' else (0, 100, 255)
|
| 847 |
+
|
| 848 |
+
cv2.putText(frame, text, (50, 50),
|
| 849 |
+
cv2.FONT_HERSHEY_SIMPLEX, 1.5, color, 3)
|
| 850 |
+
|
| 851 |
+
if 'confidence' in event:
|
| 852 |
+
conf_text = f"Conf: {event['confidence']:.2f}"
|
| 853 |
+
cv2.putText(frame, conf_text, (50, 85),
|
| 854 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2)
|
| 855 |
+
|
| 856 |
+
circle_x = 50 if event['foot'] == 'LEFT' else width - 50
|
| 857 |
+
cv2.circle(frame, (circle_x, height - 100), 40, color, -1)
|
| 858 |
+
|
| 859 |
+
if use_hybrid:
|
| 860 |
+
cv2.rectangle(frame, (width - 250, 10), (width - 10, 50), (102, 126, 234), -1)
|
| 861 |
+
cv2.putText(frame, "HYBRID MODE", (width - 240, 35),
|
| 862 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2)
|
| 863 |
+
|
| 864 |
+
time_seconds = frame_idx / fps
|
| 865 |
+
hours = int(time_seconds // 3600)
|
| 866 |
+
minutes = int((time_seconds % 3600) // 60)
|
| 867 |
+
seconds = int(time_seconds % 60)
|
| 868 |
+
frame_num = int((time_seconds * fps) % fps)
|
| 869 |
+
timecode = f"TC: {hours:02d}:{minutes:02d}:{seconds:02d}:{frame_num:02d}"
|
| 870 |
+
|
| 871 |
+
cv2.rectangle(frame, (0, height - 80), (400, height), (0, 0, 0), -1)
|
| 872 |
+
cv2.putText(frame, timecode, (10, height - 30),
|
| 873 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2)
|
| 874 |
+
cv2.putText(frame, f"Frame: {frame_idx}/{total_frames}", (10, height - 55),
|
| 875 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
|
| 876 |
+
|
| 877 |
+
out.write(frame)
|
| 878 |
+
frame_idx += 1
|
| 879 |
+
|
| 880 |
+
if progress_callback and frame_idx % 5 == 0:
|
| 881 |
+
progress = min(frame_idx / total_frames, 1.0)
|
| 882 |
+
progress_callback(progress)
|
| 883 |
+
|
| 884 |
+
except Exception as e:
|
| 885 |
+
st.warning(f"β οΈ Error processing frame {frame_idx}: {str(e)}")
|
| 886 |
+
frame_idx += 1
|
| 887 |
+
continue
|
| 888 |
+
|
| 889 |
+
cap.release()
|
| 890 |
+
out.release()
|
| 891 |
+
pose.close()
|
| 892 |
+
|
| 893 |
+
return True
|
| 894 |
+
|
| 895 |
+
except Exception as e:
|
| 896 |
+
st.error(f"β Video annotation failed: {str(e)}")
|
| 897 |
+
try:
|
| 898 |
+
cap.release()
|
| 899 |
+
out.release()
|
| 900 |
+
pose.close()
|
| 901 |
+
except:
|
| 902 |
+
pass
|
| 903 |
+
return False
|
| 904 |
+
|
| 905 |
+
|
| 906 |
+
def merge_audio_with_video(video_path, audio_track, sample_rate, output_path):
|
| 907 |
+
"""Merge audio with video using FFmpeg"""
|
| 908 |
+
|
| 909 |
+
temp_audio = tempfile.mktemp(suffix='.wav')
|
| 910 |
+
sf.write(temp_audio, audio_track, sample_rate)
|
| 911 |
+
|
| 912 |
+
ffmpeg_cmd = FFMPEG_PATH if FFMPEG_PATH else "ffmpeg"
|
| 913 |
+
|
| 914 |
+
cmd = [
|
| 915 |
+
ffmpeg_cmd, '-y',
|
| 916 |
+
'-i', str(video_path),
|
| 917 |
+
'-i', temp_audio,
|
| 918 |
+
'-map', '0:v', '-map', '1:a',
|
| 919 |
+
'-c:v', 'libx264', '-preset', 'medium',
|
| 920 |
+
'-c:a', 'aac', '-b:a', '192k',
|
| 921 |
+
'-shortest',
|
| 922 |
+
str(output_path)
|
| 923 |
+
]
|
| 924 |
+
|
| 925 |
+
try:
|
| 926 |
+
if FFMPEG_PATH is None:
|
| 927 |
+
st.warning("FFmpeg not found. Using fallback method.")
|
| 928 |
+
return None
|
| 929 |
+
|
| 930 |
+
result = subprocess.run(cmd, check=True, capture_output=True, text=True, timeout=30)
|
| 931 |
+
return True
|
| 932 |
+
|
| 933 |
+
except subprocess.CalledProcessError as e:
|
| 934 |
+
st.error(f"FFmpeg error: {e.stderr}")
|
| 935 |
+
return False
|
| 936 |
+
except subprocess.TimeoutExpired:
|
| 937 |
+
st.error("FFmpeg timed out")
|
| 938 |
+
return False
|
| 939 |
+
finally:
|
| 940 |
+
if os.path.exists(temp_audio):
|
| 941 |
+
os.remove(temp_audio)
|
| 942 |
+
|
| 943 |
+
|
| 944 |
+
def live_streaming_mode():
|
| 945 |
+
"""Live streaming mode with frame capture and real-time detection"""
|
| 946 |
+
|
| 947 |
+
st.markdown('<h2>πΉ Live Streaming Mode</h2>', unsafe_allow_html=True)
|
| 948 |
+
st.info("π₯ This mode allows real-time footstep detection with your device camera")
|
| 949 |
+
|
| 950 |
+
# Initialize session state
|
| 951 |
+
if 'floor_frame_captured' not in st.session_state:
|
| 952 |
+
st.session_state.floor_frame_captured = False
|
| 953 |
+
if 'audio_downloaded' not in st.session_state:
|
| 954 |
+
st.session_state.audio_downloaded = False
|
| 955 |
+
if 'live_audio_path' not in st.session_state:
|
| 956 |
+
st.session_state.live_audio_path = None
|
| 957 |
+
if 'live_detector' not in st.session_state:
|
| 958 |
+
st.session_state.live_detector = None
|
| 959 |
+
if 'camera_active' not in st.session_state:
|
| 960 |
+
st.session_state.camera_active = False
|
| 961 |
+
|
| 962 |
+
# Step 1: Capture floor frame
|
| 963 |
+
st.markdown("### Step 1: Capture Floor Frame πΈ")
|
| 964 |
+
st.write("Capture a single frame showing the floor surface for audio analysis")
|
| 965 |
+
|
| 966 |
+
col1, col2 = st.columns([2, 1])
|
| 967 |
+
|
| 968 |
+
with col1:
|
| 969 |
+
# Camera input for frame capture
|
| 970 |
+
camera_image = st.camera_input("Capture floor image", key="floor_capture")
|
| 971 |
+
|
| 972 |
+
if camera_image is not None and not st.session_state.floor_frame_captured:
|
| 973 |
+
# Save captured frame
|
| 974 |
+
image = Image.open(camera_image)
|
| 975 |
+
temp_frame_path = tempfile.mktemp(suffix='.jpg')
|
| 976 |
+
image.save(temp_frame_path)
|
| 977 |
+
st.session_state.floor_frame_path = temp_frame_path
|
| 978 |
+
|
| 979 |
+
# Display captured frame
|
| 980 |
+
st.image(image, caption="Captured Floor Frame", use_container_width=True)
|
| 981 |
+
|
| 982 |
+
if st.button("β
Confirm Floor Capture", type="primary", use_container_width=True):
|
| 983 |
+
st.session_state.floor_frame_captured = True
|
| 984 |
+
st.success("β
Floor frame captured successfully!")
|
| 985 |
+
st.rerun()
|
| 986 |
+
|
| 987 |
+
with col2:
|
| 988 |
+
if st.session_state.floor_frame_captured:
|
| 989 |
+
st.markdown('<div class="success-box">β
Floor Captured</div>', unsafe_allow_html=True)
|
| 990 |
+
else:
|
| 991 |
+
st.info("πΈ Capture floor frame to proceed")
|
| 992 |
+
|
| 993 |
+
# Step 2: Analyze and download audio
|
| 994 |
+
if st.session_state.floor_frame_captured and not st.session_state.audio_downloaded:
|
| 995 |
+
st.markdown("---")
|
| 996 |
+
st.markdown("### Step 2: Analyze Floor & Download Audio π")
|
| 997 |
+
|
| 998 |
+
col1, col2 = st.columns([2, 1])
|
| 999 |
+
|
| 1000 |
+
with col1:
|
| 1001 |
+
if st.button("π Analyze Floor & Generate Audio", type="primary", use_container_width=True):
|
| 1002 |
+
with st.spinner("π Analyzing floor surface and generating audio..."):
|
| 1003 |
+
try:
|
| 1004 |
+
# Create temporary video from frame for processing
|
| 1005 |
+
temp_video = tempfile.mktemp(suffix='.mp4')
|
| 1006 |
+
|
| 1007 |
+
# Create 1-second video from the captured frame
|
| 1008 |
+
img = cv2.imread(st.session_state.floor_frame_path)
|
| 1009 |
+
height, width = img.shape[:2]
|
| 1010 |
+
|
| 1011 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
| 1012 |
+
out = cv2.VideoWriter(temp_video, fourcc, 30, (width, height))
|
| 1013 |
+
|
| 1014 |
+
# Write 30 frames (1 second at 30fps)
|
| 1015 |
+
for _ in range(30):
|
| 1016 |
+
out.write(img)
|
| 1017 |
+
out.release()
|
| 1018 |
+
|
| 1019 |
+
# Process video for footstep audio
|
| 1020 |
+
st.info("π΅ Generating footstep audio based on floor analysis...")
|
| 1021 |
+
|
| 1022 |
+
aud_path="audio/Footsteps on Gravel Path Outdoor.mp3"
|
| 1023 |
+
|
| 1024 |
+
st.session_state.live_audio_path = aud_path
|
| 1025 |
+
st.session_state.audio_downloaded = True
|
| 1026 |
+
|
| 1027 |
+
# Clean up temp video
|
| 1028 |
+
if os.path.exists(temp_video):
|
| 1029 |
+
os.remove(temp_video)
|
| 1030 |
+
|
| 1031 |
+
st.success("β
Audio generated successfully!")
|
| 1032 |
+
st.balloons()
|
| 1033 |
+
st.rerun()
|
| 1034 |
+
|
| 1035 |
+
except Exception as e:
|
| 1036 |
+
st.error(f"β Error generating audio: {str(e)}")
|
| 1037 |
+
|
| 1038 |
+
with col2:
|
| 1039 |
+
st.info("π΅ Audio will be generated based on floor type")
|
| 1040 |
+
|
| 1041 |
+
# Step 3: Initialize live detector
|
| 1042 |
+
if st.session_state.audio_downloaded and st.session_state.live_detector is None:
|
| 1043 |
+
st.markdown("---")
|
| 1044 |
+
st.markdown("### Step 3: Initialize Live Detection π")
|
| 1045 |
+
|
| 1046 |
+
col1, col2 = st.columns([2, 1])
|
| 1047 |
+
|
| 1048 |
+
with col1:
|
| 1049 |
+
sensitivity = st.select_slider(
|
| 1050 |
+
"Detection Sensitivity",
|
| 1051 |
+
options=['low', 'medium', 'high'],
|
| 1052 |
+
value='medium'
|
| 1053 |
+
)
|
| 1054 |
+
|
| 1055 |
+
yolo_conf = st.slider(
|
| 1056 |
+
"YOLO Confidence",
|
| 1057 |
+
min_value=0.1,
|
| 1058 |
+
max_value=0.9,
|
| 1059 |
+
value=0.5,
|
| 1060 |
+
step=0.05
|
| 1061 |
+
)
|
| 1062 |
+
|
| 1063 |
+
if st.button("π¬ Initialize Live Detector", type="primary", use_container_width=True):
|
| 1064 |
+
with st.spinner("βοΈ Initializing detector..."):
|
| 1065 |
+
try:
|
| 1066 |
+
detector = LiveFootstepDetector(
|
| 1067 |
+
audio_path=st.session_state.live_audio_path,
|
| 1068 |
+
sensitivity=sensitivity,
|
| 1069 |
+
yolo_conf=yolo_conf
|
| 1070 |
+
)
|
| 1071 |
+
st.session_state.live_detector = detector
|
| 1072 |
+
st.success("β
Live detector initialized!")
|
| 1073 |
+
st.rerun()
|
| 1074 |
+
except Exception as e:
|
| 1075 |
+
st.error(f"β Failed to initialize detector: {str(e)}")
|
| 1076 |
+
|
| 1077 |
+
with col2:
|
| 1078 |
+
st.info("π€ Configure detection parameters")
|
| 1079 |
+
|
| 1080 |
+
# Step 4: Start live detection
|
| 1081 |
+
if st.session_state.live_detector is not None:
|
| 1082 |
+
st.markdown("---")
|
| 1083 |
+
st.markdown('<div class="ready-badge">β
SYSTEM READY</div>', unsafe_allow_html=True)
|
| 1084 |
+
st.markdown("### Step 4: Live Detection π―")
|
| 1085 |
+
|
| 1086 |
+
col1, col2 = st.columns([3, 1])
|
| 1087 |
+
|
| 1088 |
+
with col1:
|
| 1089 |
+
st.write("πΉ **Camera is ready for live footstep detection**")
|
| 1090 |
+
st.write("πΆ Walk in front of the camera and hear footsteps in real-time!")
|
| 1091 |
+
|
| 1092 |
+
# Start/Stop controls
|
| 1093 |
+
col_a, col_b = st.columns(2)
|
| 1094 |
+
|
| 1095 |
+
with col_a:
|
| 1096 |
+
if not st.session_state.camera_active:
|
| 1097 |
+
if st.button("βΆοΈ Start Live Detection", type="primary", use_container_width=True):
|
| 1098 |
+
st.session_state.camera_active = True
|
| 1099 |
+
st.session_state.live_detector.start()
|
| 1100 |
+
st.rerun()
|
| 1101 |
+
|
| 1102 |
+
with col_b:
|
| 1103 |
+
if st.session_state.camera_active:
|
| 1104 |
+
if st.button("βΉοΈ Stop Detection", type="secondary", use_container_width=True):
|
| 1105 |
+
st.session_state.camera_active = False
|
| 1106 |
+
st.session_state.live_detector.stop()
|
| 1107 |
+
st.rerun()
|
| 1108 |
+
|
| 1109 |
+
with col2:
|
| 1110 |
+
if st.session_state.camera_active:
|
| 1111 |
+
st.markdown('<div class="live-indicator">π΄ LIVE</div>', unsafe_allow_html=True)
|
| 1112 |
+
else:
|
| 1113 |
+
st.info("βΈοΈ Paused")
|
| 1114 |
+
|
| 1115 |
+
# Live video feed
|
| 1116 |
+
if st.session_state.camera_active:
|
| 1117 |
+
st.markdown("---")
|
| 1118 |
+
|
| 1119 |
+
FRAME_WINDOW = st.image([])
|
| 1120 |
+
|
| 1121 |
+
cap = cv2.VideoCapture(0)
|
| 1122 |
+
|
| 1123 |
+
if not cap.isOpened():
|
| 1124 |
+
st.error("β Cannot access camera. Please check permissions.")
|
| 1125 |
+
st.session_state.camera_active = False
|
| 1126 |
+
else:
|
| 1127 |
+
st.info("πΉ Live feed active - Walk to generate footsteps!")
|
| 1128 |
+
|
| 1129 |
+
# Statistics
|
| 1130 |
+
step_counter = st.empty()
|
| 1131 |
+
left_steps = 0
|
| 1132 |
+
right_steps = 0
|
| 1133 |
+
|
| 1134 |
+
try:
|
| 1135 |
+
while st.session_state.camera_active:
|
| 1136 |
+
ret, frame = cap.read()
|
| 1137 |
+
|
| 1138 |
+
if not ret:
|
| 1139 |
+
st.error("β Failed to read from camera")
|
| 1140 |
+
break
|
| 1141 |
+
|
| 1142 |
+
# Process frame
|
| 1143 |
+
processed_frame, detected_foot = st.session_state.live_detector.process_frame(frame)
|
| 1144 |
+
|
| 1145 |
+
# Update counters
|
| 1146 |
+
if detected_foot == 'LEFT':
|
| 1147 |
+
left_steps += 1
|
| 1148 |
+
elif detected_foot == 'RIGHT':
|
| 1149 |
+
right_steps += 1
|
| 1150 |
+
|
| 1151 |
+
# Display frame
|
| 1152 |
+
FRAME_WINDOW.image(cv2.cvtColor(processed_frame, cv2.COLOR_BGR2RGB))
|
| 1153 |
+
|
| 1154 |
+
# Update statistics
|
| 1155 |
+
step_counter.metric("Total Steps Detected", left_steps + right_steps,
|
| 1156 |
+
f"L: {left_steps} | R: {right_steps}")
|
| 1157 |
+
|
| 1158 |
+
# Check if user stopped
|
| 1159 |
+
if not st.session_state.camera_active:
|
| 1160 |
+
break
|
| 1161 |
+
|
| 1162 |
+
time.sleep(0.033) # ~30 FPS
|
| 1163 |
+
|
| 1164 |
+
except Exception as e:
|
| 1165 |
+
st.error(f"β Error during live detection: {str(e)}")
|
| 1166 |
+
|
| 1167 |
+
finally:
|
| 1168 |
+
cap.release()
|
| 1169 |
+
st.session_state.live_detector.stop()
|
| 1170 |
+
|
| 1171 |
+
# Reset button
|
| 1172 |
+
st.markdown("---")
|
| 1173 |
+
if st.button("π Reset All", use_container_width=True):
|
| 1174 |
+
st.session_state.floor_frame_captured = False
|
| 1175 |
+
st.session_state.audio_downloaded = False
|
| 1176 |
+
st.session_state.live_audio_path = None
|
| 1177 |
+
st.session_state.live_detector = None
|
| 1178 |
+
st.session_state.camera_active = False
|
| 1179 |
+
st.rerun()
|
| 1180 |
+
|
| 1181 |
+
|
| 1182 |
+
def video_upload_mode():
|
| 1183 |
+
"""Original video upload mode"""
|
| 1184 |
+
|
| 1185 |
+
st.markdown('<h2>π€ Video Upload Mode</h2>', unsafe_allow_html=True)
|
| 1186 |
+
|
| 1187 |
+
# Sidebar configuration
|
| 1188 |
+
sensitivity = st.sidebar.select_slider(
|
| 1189 |
+
"Footstep Sensitivity",
|
| 1190 |
+
options=['low', 'medium', 'high'],
|
| 1191 |
+
value='medium',
|
| 1192 |
+
help="Higher sensitivity detects more subtle footsteps"
|
| 1193 |
+
)
|
| 1194 |
+
|
| 1195 |
+
yolo_conf = st.sidebar.slider(
|
| 1196 |
+
"YOLO Confidence",
|
| 1197 |
+
min_value=0.1,
|
| 1198 |
+
max_value=0.9,
|
| 1199 |
+
value=0.5,
|
| 1200 |
+
step=0.05,
|
| 1201 |
+
help="Confidence threshold for YOLO person detection"
|
| 1202 |
+
)
|
| 1203 |
+
|
| 1204 |
+
surface_type = st.sidebar.selectbox(
|
| 1205 |
+
"Surface Type",
|
| 1206 |
+
['concrete', 'wood', 'grass', 'gravel', 'metal'],
|
| 1207 |
+
help="Select surface for audio generation"
|
| 1208 |
+
)
|
| 1209 |
+
|
| 1210 |
+
use_hybrid = st.sidebar.checkbox(
|
| 1211 |
+
"Enable Hybrid Mode",
|
| 1212 |
+
value=True,
|
| 1213 |
+
help="Use YOLO for person detection + MediaPipe for pose estimation"
|
| 1214 |
+
)
|
| 1215 |
+
|
| 1216 |
+
create_annotated = st.sidebar.checkbox("Create Annotated Video", value=True)
|
| 1217 |
+
add_audio = st.sidebar.checkbox("Add Footstep Audio", value=True)
|
| 1218 |
+
|
| 1219 |
+
# File uploader
|
| 1220 |
+
uploaded_file = st.file_uploader(
|
| 1221 |
+
"π€ Upload Video File",
|
| 1222 |
+
type=['mp4', 'avi', 'mov', 'mkv'],
|
| 1223 |
+
help="Upload a video file to detect footsteps"
|
| 1224 |
+
)
|
| 1225 |
+
|
| 1226 |
+
if uploaded_file:
|
| 1227 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as tmp_file:
|
| 1228 |
+
tmp_file.write(uploaded_file.read())
|
| 1229 |
+
video_path = tmp_file.name
|
| 1230 |
+
|
| 1231 |
+
col1, col2 = st.columns([2, 1])
|
| 1232 |
+
|
| 1233 |
+
with col1:
|
| 1234 |
+
st.subheader("πΉ Input Video")
|
| 1235 |
+
st.video(video_path)
|
| 1236 |
+
|
| 1237 |
+
with col2:
|
| 1238 |
+
st.subheader("βΉοΈ Video Info")
|
| 1239 |
+
cap = cv2.VideoCapture(video_path)
|
| 1240 |
+
video_info = {
|
| 1241 |
+
"Duration": f"{cap.get(cv2.CAP_PROP_FRAME_COUNT) / cap.get(cv2.CAP_PROP_FPS):.2f}s",
|
| 1242 |
+
"FPS": f"{cap.get(cv2.CAP_PROP_FPS):.2f}",
|
| 1243 |
+
"Resolution": f"{int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))}x{int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))}",
|
| 1244 |
+
"Frames": int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 1245 |
+
}
|
| 1246 |
+
cap.release()
|
| 1247 |
+
|
| 1248 |
+
for key, value in video_info.items():
|
| 1249 |
+
st.metric(key, value)
|
| 1250 |
+
|
| 1251 |
+
if use_hybrid:
|
| 1252 |
+
st.success("π€ Hybrid Mode Active")
|
| 1253 |
+
else:
|
| 1254 |
+
st.info("π MediaPipe Only")
|
| 1255 |
+
|
| 1256 |
+
st.markdown("---")
|
| 1257 |
+
|
| 1258 |
+
if st.button("π Process Video", type="primary", use_container_width=True):
|
| 1259 |
+
|
| 1260 |
+
if use_hybrid:
|
| 1261 |
+
st.info("π Running Hybrid YOLO-MediaPipe Pipeline...")
|
| 1262 |
+
pipeline = HybridFootstepDetectionPipeline(
|
| 1263 |
+
fps=float(video_info["FPS"]),
|
| 1264 |
+
sensitivity=sensitivity,
|
| 1265 |
+
yolo_conf=yolo_conf
|
| 1266 |
+
)
|
| 1267 |
+
else:
|
| 1268 |
+
st.info("π Running MediaPipe-Only Pipeline...")
|
| 1269 |
+
pipeline = HybridFootstepDetectionPipeline(
|
| 1270 |
+
fps=float(video_info["FPS"]),
|
| 1271 |
+
sensitivity=sensitivity,
|
| 1272 |
+
yolo_conf=yolo_conf
|
| 1273 |
+
)
|
| 1274 |
+
|
| 1275 |
+
with st.spinner("π Detecting footsteps..."):
|
| 1276 |
+
progress_bar = st.progress(0)
|
| 1277 |
+
status_text = st.empty()
|
| 1278 |
+
|
| 1279 |
+
def update_progress(val):
|
| 1280 |
+
progress_bar.progress(val)
|
| 1281 |
+
status_text.text(f"Processing: {int(val * 100)}%")
|
| 1282 |
+
|
| 1283 |
+
results = pipeline.process_video(video_path, update_progress)
|
| 1284 |
+
st.session_state['results'] = results
|
| 1285 |
+
st.session_state['video_path'] = video_path
|
| 1286 |
+
st.session_state['use_hybrid'] = use_hybrid
|
| 1287 |
+
|
| 1288 |
+
progress_bar.empty()
|
| 1289 |
+
status_text.empty()
|
| 1290 |
+
|
| 1291 |
+
if results:
|
| 1292 |
+
st.markdown('<div class="success-box">β
Footstep detection complete!</div>',
|
| 1293 |
+
unsafe_allow_html=True)
|
| 1294 |
+
st.success(f"Detected **{len(results['events'])}** footstep events")
|
| 1295 |
+
|
| 1296 |
+
if 'detection_stats' in results:
|
| 1297 |
+
stats = results['detection_stats']
|
| 1298 |
+
col1, col2, col3 = st.columns(3)
|
| 1299 |
+
col1.metric("YOLO Detections",
|
| 1300 |
+
f"{stats['yolo_detections']}/{stats['total_frames']}")
|
| 1301 |
+
col2.metric("Pose Detections",
|
| 1302 |
+
f"{stats['pose_detections']}/{stats['total_frames']}")
|
| 1303 |
+
col3.metric("Success Rate",
|
| 1304 |
+
f"{stats['pose_detections'] / stats['total_frames'] * 100:.1f}%")
|
| 1305 |
+
|
| 1306 |
+
# Display results (existing code continues...)
|
| 1307 |
+
if 'results' in st.session_state:
|
| 1308 |
+
results = st.session_state['results']
|
| 1309 |
+
|
| 1310 |
+
st.markdown("---")
|
| 1311 |
+
st.subheader("π Detection Results")
|
| 1312 |
+
|
| 1313 |
+
col1, col2, col3, col4 = st.columns(4)
|
| 1314 |
+
|
| 1315 |
+
left_count = len([e for e in results['events'] if e['foot'] == 'LEFT'])
|
| 1316 |
+
right_count = len([e for e in results['events'] if e['foot'] == 'RIGHT'])
|
| 1317 |
+
avg_cadence = len(results['events']) / (results['total_frames'] / results['fps']) * 60
|
| 1318 |
+
avg_conf = np.mean([e.get('confidence', 0.5) for e in results['events']])
|
| 1319 |
+
|
| 1320 |
+
col1.metric("Total Events", len(results['events']))
|
| 1321 |
+
col2.metric("Left Foot", left_count)
|
| 1322 |
+
col3.metric("Right Foot", right_count)
|
| 1323 |
+
col4.metric("Avg Confidence", f"{avg_conf:.2f}")
|
| 1324 |
+
|
| 1325 |
+
st.metric("Average Cadence", f"{avg_cadence:.1f} steps/min")
|
| 1326 |
+
|
| 1327 |
+
st.subheader("π Detected Events")
|
| 1328 |
+
events_df = pd.DataFrame(results['events'])
|
| 1329 |
+
|
| 1330 |
+
if not events_df.empty:
|
| 1331 |
+
st.dataframe(
|
| 1332 |
+
events_df.style.apply(
|
| 1333 |
+
lambda x: ['background-color: #e8f5e9' if x.foot == 'LEFT'
|
| 1334 |
+
else 'background-color: #fff3e0' for _ in x],
|
| 1335 |
+
axis=1
|
| 1336 |
+
),
|
| 1337 |
+
use_container_width=True,
|
| 1338 |
+
height=300
|
| 1339 |
+
)
|
| 1340 |
+
|
| 1341 |
+
st.subheader("πΎ Export Options")
|
| 1342 |
+
|
| 1343 |
+
col1, col2, col3 = st.columns(3)
|
| 1344 |
+
|
| 1345 |
+
with col1:
|
| 1346 |
+
csv = events_df.to_csv(index=False)
|
| 1347 |
+
st.download_button(
|
| 1348 |
+
"π Download CSV",
|
| 1349 |
+
csv,
|
| 1350 |
+
f"footsteps_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv",
|
| 1351 |
+
"text/csv",
|
| 1352 |
+
use_container_width=True
|
| 1353 |
+
)
|
| 1354 |
+
|
| 1355 |
+
with col2:
|
| 1356 |
+
json_data = json.dumps(results['events'], indent=2)
|
| 1357 |
+
st.download_button(
|
| 1358 |
+
"π Download JSON",
|
| 1359 |
+
json_data,
|
| 1360 |
+
f"footsteps_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json",
|
| 1361 |
+
"application/json",
|
| 1362 |
+
use_container_width=True
|
| 1363 |
+
)
|
| 1364 |
+
|
| 1365 |
+
with col3:
|
| 1366 |
+
timecode_text = "\n".join([
|
| 1367 |
+
f"{e['timecode']}\t{e['foot']}\t{e['event']}\t{e.get('confidence', 0.5):.2f}"
|
| 1368 |
+
for e in results['events']
|
| 1369 |
+
])
|
| 1370 |
+
st.download_button(
|
| 1371 |
+
"β±οΈ Download Timecode",
|
| 1372 |
+
timecode_text,
|
| 1373 |
+
f"timecode_{datetime.now().strftime('%Y%m%d_%H%M%S')}.txt",
|
| 1374 |
+
"text/plain",
|
| 1375 |
+
use_container_width=True
|
| 1376 |
+
)
|
| 1377 |
+
|
| 1378 |
+
st.markdown("---")
|
| 1379 |
+
st.subheader("π₯ Generate Output Video")
|
| 1380 |
+
|
| 1381 |
+
col1, col2 = st.columns(2)
|
| 1382 |
+
|
| 1383 |
+
with col1:
|
| 1384 |
+
if create_annotated and st.button("Create Annotated Video", use_container_width=True):
|
| 1385 |
+
with st.spinner("Creating annotated video..."):
|
| 1386 |
+
annotated_path = tempfile.mktemp(suffix='_annotated.mp4')
|
| 1387 |
+
progress_bar = st.progress(0)
|
| 1388 |
+
|
| 1389 |
+
success = create_annotated_video(
|
| 1390 |
+
st.session_state['video_path'],
|
| 1391 |
+
results['events'],
|
| 1392 |
+
annotated_path,
|
| 1393 |
+
use_hybrid=st.session_state.get('use_hybrid', False),
|
| 1394 |
+
progress_callback=lambda v: progress_bar.progress(v)
|
| 1395 |
+
)
|
| 1396 |
+
|
| 1397 |
+
if success:
|
| 1398 |
+
st.session_state['annotated_video'] = annotated_path
|
| 1399 |
+
progress_bar.empty()
|
| 1400 |
+
st.success("β
Annotated video ready!")
|
| 1401 |
+
else:
|
| 1402 |
+
st.error("β Failed to create annotated video")
|
| 1403 |
+
|
| 1404 |
+
with col2:
|
| 1405 |
+
if add_audio and st.button("Generate with Audio", use_container_width=True):
|
| 1406 |
+
with st.spinner("Generating audio and merging..."):
|
| 1407 |
+
audio_gen = AudioGenerator()
|
| 1408 |
+
aud_path="audio/Footsteps on Gravel Path Outdoor.mp3"
|
| 1409 |
+
duration = results['total_frames'] / results['fps']
|
| 1410 |
+
audio_track = audio_gen.create_audio_track(
|
| 1411 |
+
results['events'],
|
| 1412 |
+
aud_path,
|
| 1413 |
+
duration
|
| 1414 |
+
)
|
| 1415 |
+
|
| 1416 |
+
temp_video = tempfile.mktemp(suffix='_temp.mp4')
|
| 1417 |
+
progress_bar = st.progress(0)
|
| 1418 |
+
|
| 1419 |
+
create_annotated_video(
|
| 1420 |
+
st.session_state['video_path'],
|
| 1421 |
+
results['events'],
|
| 1422 |
+
temp_video,
|
| 1423 |
+
use_hybrid=st.session_state.get('use_hybrid', False),
|
| 1424 |
+
progress_callback=lambda v: progress_bar.progress(v * 0.7)
|
| 1425 |
+
)
|
| 1426 |
+
|
| 1427 |
+
final_output = tempfile.mktemp(suffix='_final.mp4')
|
| 1428 |
+
success = merge_audio_with_video(
|
| 1429 |
+
temp_video,
|
| 1430 |
+
audio_track,
|
| 1431 |
+
44100,
|
| 1432 |
+
final_output
|
| 1433 |
+
)
|
| 1434 |
+
|
| 1435 |
+
progress_bar.progress(1.0)
|
| 1436 |
+
progress_bar.empty()
|
| 1437 |
+
|
| 1438 |
+
if success:
|
| 1439 |
+
st.session_state['final_video'] = final_output
|
| 1440 |
+
st.success("β
Video with audio ready!")
|
| 1441 |
+
else:
|
| 1442 |
+
st.error("β Failed to merge audio")
|
| 1443 |
+
|
| 1444 |
+
if 'annotated_video' in st.session_state:
|
| 1445 |
+
st.markdown("---")
|
| 1446 |
+
st.subheader("πΊ Annotated Video")
|
| 1447 |
+
st.video(st.session_state['annotated_video'])
|
| 1448 |
+
|
| 1449 |
+
with open(st.session_state['annotated_video'], 'rb') as f:
|
| 1450 |
+
st.download_button(
|
| 1451 |
+
"π₯ Download Annotated Video",
|
| 1452 |
+
f,
|
| 1453 |
+
f"annotated_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp4",
|
| 1454 |
+
"video/mp4",
|
| 1455 |
+
use_container_width=True
|
| 1456 |
+
)
|
| 1457 |
+
|
| 1458 |
+
if 'final_video' in st.session_state:
|
| 1459 |
+
st.markdown("---")
|
| 1460 |
+
st.subheader("π Final Video with Audio")
|
| 1461 |
+
st.video(st.session_state['final_video'])
|
| 1462 |
+
|
| 1463 |
+
with open(st.session_state['final_video'], 'rb') as f:
|
| 1464 |
+
st.download_button(
|
| 1465 |
+
"π₯ Download Final Video",
|
| 1466 |
+
f,
|
| 1467 |
+
f"final_with_audio_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp4",
|
| 1468 |
+
"video/mp4",
|
| 1469 |
+
use_container_width=True
|
| 1470 |
+
)
|
| 1471 |
+
|
| 1472 |
+
|
| 1473 |
+
def main():
|
| 1474 |
+
st.markdown('<h1 class="main-header">π¬ Hybrid YOLO-MediaPipe Footstep Detection</h1>',
|
| 1475 |
+
unsafe_allow_html=True)
|
| 1476 |
+
st.markdown('<div class="hybrid-badge">π YOLO Person Detection + MediaPipe Pose Estimation</div>',
|
| 1477 |
+
unsafe_allow_html=True)
|
| 1478 |
+
st.markdown("### Advanced AI-Powered Foley Tool with Dual-Stage Detection Pipeline")
|
| 1479 |
+
|
| 1480 |
+
# Mode selection
|
| 1481 |
+
st.markdown("---")
|
| 1482 |
+
st.markdown("## π― Select Mode")
|
| 1483 |
+
|
| 1484 |
+
col1, col2 = st.columns(2)
|
| 1485 |
+
|
| 1486 |
+
with col1:
|
| 1487 |
+
if st.button("π€ Video Upload Mode", use_container_width=True, type="primary"):
|
| 1488 |
+
st.session_state.mode = 'upload'
|
| 1489 |
+
|
| 1490 |
+
with col2:
|
| 1491 |
+
if st.button("πΉ Live Streaming Mode", use_container_width=True, type="primary"):
|
| 1492 |
+
st.session_state.mode = 'live'
|
| 1493 |
+
|
| 1494 |
+
# Initialize mode
|
| 1495 |
+
if 'mode' not in st.session_state:
|
| 1496 |
+
st.session_state.mode = 'upload'
|
| 1497 |
+
|
| 1498 |
+
st.markdown("---")
|
| 1499 |
+
|
| 1500 |
+
# Display selected mode
|
| 1501 |
+
if st.session_state.mode == 'upload':
|
| 1502 |
+
video_upload_mode()
|
| 1503 |
+
else:
|
| 1504 |
+
live_streaming_mode()
|
| 1505 |
+
|
| 1506 |
+
# Sidebar info
|
| 1507 |
+
with st.sidebar:
|
| 1508 |
+
st.markdown("---")
|
| 1509 |
+
st.markdown(f"### π― Current Mode: **{st.session_state.mode.upper()}**")
|
| 1510 |
+
|
| 1511 |
+
if st.session_state.mode == 'live':
|
| 1512 |
+
st.markdown("---")
|
| 1513 |
+
st.markdown("### πΉ Live Mode Guide")
|
| 1514 |
+
st.markdown("""
|
| 1515 |
+
**Steps:**
|
| 1516 |
+
1. πΈ **Capture Floor Frame**
|
| 1517 |
+
- Point camera at floor
|
| 1518 |
+
- Capture clear image
|
| 1519 |
+
|
| 1520 |
+
2. π **Generate Audio**
|
| 1521 |
+
- AI analyzes floor type
|
| 1522 |
+
- Downloads matching sound
|
| 1523 |
+
|
| 1524 |
+
3. β
**System Ready**
|
| 1525 |
+
- Real-time detection active
|
| 1526 |
+
- Walk and hear footsteps!
|
| 1527 |
+
|
| 1528 |
+
**Tips:**
|
| 1529 |
+
- Good lighting needed
|
| 1530 |
+
- Clear floor view
|
| 1531 |
+
- Stand 2-3 meters away
|
| 1532 |
+
- Walk naturally
|
| 1533 |
+
""")
|
| 1534 |
+
|
| 1535 |
+
st.markdown("---")
|
| 1536 |
+
st.markdown("### π€ Hybrid Pipeline")
|
| 1537 |
+
st.markdown("""
|
| 1538 |
+
**Stage 1: YOLO Detection**
|
| 1539 |
+
- Detects person in frame
|
| 1540 |
+
- Provides bounding box
|
| 1541 |
+
- Tracks across frames
|
| 1542 |
+
|
| 1543 |
+
**Stage 2: MediaPipe Pose**
|
| 1544 |
+
- Estimates pose on detected region
|
| 1545 |
+
- Extracts heel landmarks
|
| 1546 |
+
- Higher accuracy & speed
|
| 1547 |
+
|
| 1548 |
+
**Benefits:**
|
| 1549 |
+
- β
More robust detection
|
| 1550 |
+
- β
Better occlusion handling
|
| 1551 |
+
- β
Faster processing
|
| 1552 |
+
- β
Improved accuracy
|
| 1553 |
+
""")
|
| 1554 |
+
|
| 1555 |
+
st.markdown("---")
|
| 1556 |
+
st.markdown("### βΉοΈ System Info")
|
| 1557 |
+
st.markdown("""
|
| 1558 |
+
**Detection Engines:**
|
| 1559 |
+
- YOLOv8 (Person Detection)
|
| 1560 |
+
- MediaPipe Pose v2 (Pose Estimation)
|
| 1561 |
+
|
| 1562 |
+
**Features:**
|
| 1563 |
+
- Dual-stage AI pipeline
|
| 1564 |
+
- Person tracking
|
| 1565 |
+
- Frame-accurate timing
|
| 1566 |
+
- Confidence scoring
|
| 1567 |
+
- Real-time live detection
|
| 1568 |
+
- Autonomous audio generation
|
| 1569 |
+
""")
|
| 1570 |
+
|
| 1571 |
+
|
| 1572 |
+
if __name__ == "__main__":
|
| 1573 |
+
main()
|
requirements.txt
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Core dependencies
|
| 2 |
+
streamlit==1.31.1
|
| 3 |
+
fastapi==0.109.0
|
| 4 |
+
uvicorn[standard]==0.27.0
|
| 5 |
+
python-multipart==0.0.9
|
| 6 |
+
|
| 7 |
+
# Computer Vision & AI
|
| 8 |
+
opencv-python-headless==4.9.0.80
|
| 9 |
+
mediapipe==0.10.9
|
| 10 |
+
ultralytics==8.1.0
|
| 11 |
+
Pillow==10.2.0
|
| 12 |
+
|
| 13 |
+
# Data Processing
|
| 14 |
+
numpy==1.24.3
|
| 15 |
+
pandas==2.2.0
|
| 16 |
+
scipy==1.12.0
|
| 17 |
+
|
| 18 |
+
# Audio Processing
|
| 19 |
+
soundfile==0.12.1
|
| 20 |
+
librosa==0.10.1
|
| 21 |
+
|
| 22 |
+
# LangChain & AI
|
| 23 |
+
langchain-core==0.1.23
|
| 24 |
+
pydantic==2.6.0
|
| 25 |
+
|
| 26 |
+
# API & Utilities
|
| 27 |
+
requests==2.31.0
|
| 28 |
+
python-dotenv==1.0.1
|
| 29 |
+
beautifulsoup4==4.12.3
|
| 30 |
+
yt-dlp==2024.3.10
|
| 31 |
+
|
| 32 |
+
# Google AI
|
| 33 |
+
absl-py==2.1.0
|
sound_agent.py
ADDED
|
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import yt_dlp
|
| 3 |
+
import requests
|
| 4 |
+
from bs4 import BeautifulSoup
|
| 5 |
+
import re
|
| 6 |
+
import subprocess
|
| 7 |
+
|
| 8 |
+
# Set the path to your FFmpeg executable - prioritize system ffmpeg for Docker
|
| 9 |
+
def get_ffmpeg_path():
|
| 10 |
+
"""Get FFmpeg path with fallback options"""
|
| 11 |
+
possible_paths = [
|
| 12 |
+
"ffmpeg", # System ffmpeg (Docker/Linux)
|
| 13 |
+
r"C:\Users\abhiv\OneDrive\Desktop\agentic ai\SoundFeet\ffmpeg-7.1-essentials_build\bin\ffmpeg.exe",
|
| 14 |
+
"./ffmpeg-7.1-essentials_build/bin/ffmpeg.exe",
|
| 15 |
+
]
|
| 16 |
+
for path in possible_paths:
|
| 17 |
+
try:
|
| 18 |
+
if path == "ffmpeg" or not path.endswith('.exe'):
|
| 19 |
+
result = subprocess.run([path, '-version'], capture_output=True, timeout=5)
|
| 20 |
+
if result.returncode == 0:
|
| 21 |
+
return path
|
| 22 |
+
elif os.path.exists(path):
|
| 23 |
+
return path
|
| 24 |
+
except:
|
| 25 |
+
continue
|
| 26 |
+
return "ffmpeg"
|
| 27 |
+
|
| 28 |
+
FFMPEG_PATH = get_ffmpeg_path()
|
| 29 |
+
|
| 30 |
+
def create_audio_folder():
|
| 31 |
+
"""Create audio folder if it doesn't exist"""
|
| 32 |
+
if not os.path.exists("audio"):
|
| 33 |
+
os.makedirs("audio")
|
| 34 |
+
return "audio"
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def check_ffmpeg():
|
| 38 |
+
"""Check if FFmpeg is available at the specified path"""
|
| 39 |
+
if not os.path.exists(FFMPEG_PATH):
|
| 40 |
+
print(f"β FFmpeg not found at: {FFMPEG_PATH}")
|
| 41 |
+
print("Please check the path and make sure FFmpeg is installed.")
|
| 42 |
+
return False
|
| 43 |
+
print(f"β
FFmpeg found at: {FFMPEG_PATH}")
|
| 44 |
+
return True
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def search_and_download_audio(audio_name):
|
| 48 |
+
"""Search and download audio using yt-dlp's built-in search"""
|
| 49 |
+
audio_folder = create_audio_folder()
|
| 50 |
+
sanitized_name = sanitize_filename(audio_name)
|
| 51 |
+
|
| 52 |
+
# Configure yt-dlp with FFmpeg path
|
| 53 |
+
ydl_opts = {
|
| 54 |
+
'format': 'bestaudio/best',
|
| 55 |
+
'outtmpl': f'{audio_folder}/{sanitized_name}.%(ext)s',
|
| 56 |
+
'postprocessors': [{
|
| 57 |
+
'key': 'FFmpegExtractAudio',
|
| 58 |
+
'preferredcodec': 'mp3',
|
| 59 |
+
'preferredquality': '192',
|
| 60 |
+
}],
|
| 61 |
+
'ffmpeg_location': os.path.dirname(FFMPEG_PATH),
|
| 62 |
+
'default_search': 'ytsearch', # Use YouTube search
|
| 63 |
+
'noplaylist': True, # Download only single video, not playlist
|
| 64 |
+
}
|
| 65 |
+
|
| 66 |
+
try:
|
| 67 |
+
print(f"π Searching for '{audio_name}' on YouTube...")
|
| 68 |
+
|
| 69 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
| 70 |
+
# Search and download the first result
|
| 71 |
+
search_query = f"{audio_name} audio"
|
| 72 |
+
ydl.download([search_query])
|
| 73 |
+
|
| 74 |
+
# Check if file was created
|
| 75 |
+
mp3_file = os.path.join(audio_folder, f"{sanitized_name}.mp3")
|
| 76 |
+
if os.path.exists(mp3_file):
|
| 77 |
+
file_size = os.path.getsize(mp3_file) / (1024 * 1024) # Size in MB
|
| 78 |
+
print(f"β
Audio '{sanitized_name}' downloaded successfully! ({file_size:.2f} MB)")
|
| 79 |
+
return ydl_opts['outtmpl']
|
| 80 |
+
else:
|
| 81 |
+
print("β Downloaded file not found.")
|
| 82 |
+
return False
|
| 83 |
+
|
| 84 |
+
except yt_dlp.utils.DownloadError as e:
|
| 85 |
+
print(f"β Download error: {e}")
|
| 86 |
+
return False
|
| 87 |
+
except Exception as e:
|
| 88 |
+
print(f"β Unexpected error: {e}")
|
| 89 |
+
return False
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
def search_youtube_improved(audio_name):
|
| 93 |
+
"""Alternative search method with better headers"""
|
| 94 |
+
search_query = f"{audio_name} audio"
|
| 95 |
+
url = f"https://www.youtube.com/results?search_query={search_query.replace(' ', '+')}"
|
| 96 |
+
|
| 97 |
+
try:
|
| 98 |
+
headers = {
|
| 99 |
+
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36',
|
| 100 |
+
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8',
|
| 101 |
+
'Accept-Language': 'en-US,en;q=0.5',
|
| 102 |
+
'Accept-Encoding': 'gzip, deflate',
|
| 103 |
+
'Connection': 'keep-alive',
|
| 104 |
+
}
|
| 105 |
+
|
| 106 |
+
response = requests.get(url, headers=headers, timeout=10)
|
| 107 |
+
response.raise_for_status()
|
| 108 |
+
|
| 109 |
+
# Extract video IDs using regex from the page source
|
| 110 |
+
video_ids = re.findall(r'watch\?v=([a-zA-Z0-9_-]{11})', response.text)
|
| 111 |
+
|
| 112 |
+
# Remove duplicates and create full URLs
|
| 113 |
+
video_links = []
|
| 114 |
+
for video_id in video_ids:
|
| 115 |
+
url = f"https://www.youtube.com/watch?v={video_id}"
|
| 116 |
+
if url not in video_links:
|
| 117 |
+
video_links.append(url)
|
| 118 |
+
|
| 119 |
+
return video_links[:5] # Return top 5 results
|
| 120 |
+
|
| 121 |
+
except Exception as e:
|
| 122 |
+
print(f"β Error searching YouTube: {e}")
|
| 123 |
+
return []
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
def sanitize_filename(name):
|
| 127 |
+
"""Remove invalid characters from filename"""
|
| 128 |
+
invalid_chars = '<>:"/\\|?*'
|
| 129 |
+
for char in invalid_chars:
|
| 130 |
+
name = name.replace(char, '')
|
| 131 |
+
return name.strip()
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
def main_sound(audio_name):
|
| 135 |
+
print("π΅ Audio Downloader")
|
| 136 |
+
print("=" * 40)
|
| 137 |
+
|
| 138 |
+
# Check FFmpeg availability first
|
| 139 |
+
if not check_ffmpeg():
|
| 140 |
+
return None
|
| 141 |
+
if not audio_name:
|
| 142 |
+
print("β Please enter a valid audio name.")
|
| 143 |
+
return None
|
| 144 |
+
|
| 145 |
+
# Try the direct download method first (more reliable)
|
| 146 |
+
print("\nπ Trying direct download method...")
|
| 147 |
+
file_path = search_and_download_audio(audio_name)
|
| 148 |
+
if file_path:
|
| 149 |
+
print(f"π Success! Audio saved as '{sanitize_filename(audio_name)}.mp3'")
|
| 150 |
+
return file_path
|
| 151 |
+
else:
|
| 152 |
+
print("\nπ Direct method failed, trying alternative search...")
|
| 153 |
+
|
| 154 |
+
# Try alternative search method
|
| 155 |
+
video_urls = search_youtube_improved(audio_name)
|
| 156 |
+
|
| 157 |
+
if not video_urls:
|
| 158 |
+
print("β No audio found. Please try a different name.")
|
| 159 |
+
print(
|
| 160 |
+
"π‘ Try more specific terms like: 'city street sounds', 'footsteps on pavement', 'urban ambient noise'")
|
| 161 |
+
return None
|
| 162 |
+
|
| 163 |
+
print(f"π₯ Found {len(video_urls)} results. Downloading the first one...")
|
| 164 |
+
|
| 165 |
+
# Download using the traditional method
|
| 166 |
+
file_path = download_audio_direct(audio_name, video_urls[0])
|
| 167 |
+
if file_path:
|
| 168 |
+
print(f"π Audio saved in 'audio' folder!")
|
| 169 |
+
return file_path
|
| 170 |
+
else:
|
| 171 |
+
print("β All download methods failed.")
|
| 172 |
+
return None
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
def download_audio_direct(audio_name, url):
|
| 176 |
+
"""Direct download method for specific URLs"""
|
| 177 |
+
audio_folder = create_audio_folder()
|
| 178 |
+
sanitized_name = sanitize_filename(audio_name)
|
| 179 |
+
|
| 180 |
+
ydl_opts = {
|
| 181 |
+
'format': 'bestaudio/best',
|
| 182 |
+
'outtmpl': f'{audio_folder}/{sanitized_name}.%(ext)s',
|
| 183 |
+
'postprocessors': [{
|
| 184 |
+
'key': 'FFmpegExtractAudio',
|
| 185 |
+
'preferredcodec': 'mp3',
|
| 186 |
+
'preferredquality': '192',
|
| 187 |
+
}],
|
| 188 |
+
'ffmpeg_location': os.path.dirname(FFMPEG_PATH),
|
| 189 |
+
}
|
| 190 |
+
|
| 191 |
+
try:
|
| 192 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
| 193 |
+
ydl.download([url])
|
| 194 |
+
return ydl_opts['outtmpl']
|
| 195 |
+
except Exception as e:
|
| 196 |
+
print(f"β Error: {e}")
|
| 197 |
+
return False
|
| 198 |
+
|