UrduOCR-UTRNet / app.py
mwz's picture
Update app.py
07d52d8 verified
raw
history blame
2.53 kB
import torch
import gradio as gr
from read import text_recognizer
from model import Model
from utils import CTCLabelConverter
from ultralytics import YOLO
from PIL import ImageDraw
""" vocab / character number configuration """
file = open("UrduGlyphs.txt","r",encoding="utf-8")
content = file.readlines()
content = ''.join([str(elem).strip('\n') for elem in content])
content = content+" "
""" model configuration """
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
converter = CTCLabelConverter(content)
recognition_model = Model(num_class=len(converter.character), device=device)
recognition_model = recognition_model.to(device)
recognition_model.load_state_dict(torch.load("best_norm_ED.pth", map_location=device))
recognition_model.eval()
detection_model = YOLO("yolov8m_UrduDoc.pt")
examples = ["1.jpg","2.jpg","3.jpg"]
input = gr.Image(type="pil",image_mode="RGB", label="Input Image")
def predict(input):
"Line Detection"
detection_results = detection_model.predict(source=input, conf=0.2, imgsz=1280, save=False, nms=True, device=device)
bounding_boxes = detection_results[0].boxes.xyxy.cpu().numpy().tolist()
bounding_boxes.sort(key=lambda x: x[1])
"Draw the bounding boxes"
draw = ImageDraw.Draw(input)
for box in bounding_boxes:
# draw rectangle outline with random color and width=5
from numpy import random
draw.rectangle(box, fill=None, outline=tuple(random.randint(0,255,3)), width=5)
"Crop the detected lines"
cropped_images = []
for box in bounding_boxes:
cropped_images.append(input.crop(box))
len(cropped_images)
"Recognize the text"
texts = []
for img in cropped_images:
texts.append(text_recognizer(img, recognition_model, converter, device))
"Join the text"
text = "\n".join(texts)
"Return the image with bounding boxes and the text"
return input,text
output_image = gr.Image(type="pil",image_mode="RGB",label="Detected Lines")
output_text = gr.Textbox(label="Recognized Text",interactive=True,show_copy_button=True)
iface = gr.Interface(predict,
inputs=input,
outputs=[output_image,output_text],
title="End-to-End Urdu OCR",
description="Demo Web App For UTRNet\n(https://github.com/abdur75648/UTRNet-High-Resolution-Urdu-Text-Recognition)",
examples=examples,
allow_flagging="never")
iface.launch(show_error=True)