Spaces:
Runtime error
Runtime error
import streamlit as st | |
from PIL import Image | |
import numpy as np | |
import tensorflow as tf | |
from tensorflow import keras | |
import matplotlib.pyplot as plt | |
import tensorflow_hub as hub | |
hide_streamlit_style = """ | |
<style> | |
#MainMenu {visibility: hidden;} | |
footer {visibility: hidden;} | |
</style> | |
""" | |
st.markdown(hide_streamlit_style, unsafe_allow_html = True) | |
st.title('Plant Disease Prediction') | |
st.write("This model is capable of predicting 38 different classes of plant diseases") | |
def main() : | |
file_uploaded = st.file_uploader('Choose an image...', type = 'jpg') | |
if file_uploaded is not None : | |
image = Image.open(file_uploaded) | |
st.write("Uploaded Image.") | |
figure = plt.figure() | |
plt.imshow(image) | |
plt.axis('off') | |
st.pyplot(figure) | |
result, confidence = predict_class(image) | |
st.write('Prediction : {}'.format(result)) | |
st.write('Confidence : {}%'.format(confidence)) | |
def predict_class(image) : | |
with st.spinner('Loading Model...'): | |
classifier_model = keras.models.load_model(r'final1_model.h5', compile = False) | |
shape = ((255,255,3)) | |
model = keras.Sequential([hub.KerasLayer(classifier_model, input_shape = shape)]) # ye bhi kaam kar raha he | |
test_image = image.resize((255, 255)) | |
test_image = keras.preprocessing.image.img_to_array(test_image) | |
test_image /= 255.0 | |
test_image = np.expand_dims(test_image, axis = 0) | |
class_name = ["Apple___Apple_scab","Apple___Black_rot", | |
"Apple___Cedar_apple_rust","Apple___healthy", | |
"Blueberry___healthy", | |
"Cherry_(including_sour)___Powdery_mildew", | |
"Cherry___healthy", | |
"Corn_(maize)___Cercospora_leaf_spot Gray_leaf_spot", | |
"Corn_(maize)___Common_rust_", | |
"Corn_(maize)___Northern_Leaf_Blight", | |
"Corn_(maize)___healthy","Grape___Black_rot", | |
"Grape___Esca_(Black_Measles)", | |
"Grape___Leaf_blight_(Isariopsis_Leaf_Spot)", | |
"Grape___healthy", | |
"Orange___Haunglongbing_(Citrus_greening)", | |
"Peach___Bacterial_spot", | |
"Peach___healthy", | |
"Pepper__bell___Bacterial_spot", | |
"Pepper,_bell___healthy", | |
"Potato___Early_blight", | |
"Potato___Late_blight", | |
"Potato___healthy", | |
"Raspberry___healthy", | |
"Soybean___healthy", | |
"Squash___Powdery_mildew", | |
"Strawberry___Leaf_scorch", | |
"Strawberry___healthy", | |
"Tomato___Bacterial_spot", | |
"Tomato___Early_blight", | |
"Tomato___Late_blight", | |
"Tomato___Leaf_Mold", | |
"Tomato___Septoria_leaf_spot", | |
"Tomato___Spider_mites Two-spotted_spider_mite", | |
"Tomato___Target_Spot", | |
"Tomato___Tomato_Yellow_Leaf_Curl_Virus", | |
"Tomato___Tomato_mosaic_virus", | |
"Tomato___healthy"] | |
prediction = model.predict_generator(test_image) | |
confidence = round(100 * (np.max(prediction[0])), 2) | |
final_pred = class_name[np.argmax(prediction)] | |
return final_pred, confidence | |
footer = """ | |
<style> | |
a:link , a:visited{ | |
color: white; | |
background-color: transparent; | |
text-decoration: None; | |
} | |
a:hover, a:active { | |
color: red; | |
background-color: transparent; | |
text-decoration: None; | |
} | |
.footer { | |
position: fixed; | |
left: 0; | |
bottom: 0; | |
width: 100%; | |
background-color: transparent; | |
color: black; | |
text-align: center; | |
} | |
<div class="footer"> | |
<p align="center"> Developed with ❤ by Mato</p> | |
</div> | |
</style> | |
""" | |
st.markdown(footer, unsafe_allow_html = True) | |
if __name__ == "__main__": | |
main() |