Spaces:
Sleeping
Sleeping
import streamlit as st | |
import sparknlp | |
from sparknlp.base import * | |
from sparknlp.annotator import * | |
from pyspark.ml import Pipeline | |
# Page configuration | |
st.set_page_config( | |
layout="wide", | |
initial_sidebar_state="auto" | |
) | |
# CSS for styling | |
st.markdown(""" | |
<style> | |
.main-title { | |
font-size: 36px; | |
color: #4A90E2; | |
font-weight: bold; | |
text-align: center; | |
} | |
.section { | |
background-color: #f9f9f9; | |
padding: 10px; | |
border-radius: 10px; | |
margin-top: 10px; | |
} | |
.section p, .section ul { | |
color: #666666; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
def init_spark(): | |
return sparknlp.start() | |
def create_pipeline(model): | |
documentAssembler = DocumentAssembler() \ | |
.setInputCol("text") \ | |
.setOutputCol("documents") | |
t5 = T5Transformer.pretrained(model) \ | |
.setTask("translate English to SQL:") \ | |
.setInputCols(["documents"]) \ | |
.setMaxOutputLength(200) \ | |
.setOutputCol("sql") | |
pipeline = Pipeline().setStages([documentAssembler, t5]) | |
return pipeline | |
def fit_data(pipeline, data): | |
df = spark.createDataFrame([[data]]).toDF("text") | |
result = pipeline.fit(df).transform(df) | |
return result.select('sql.result').collect() | |
# Sidebar content | |
model = st.sidebar.selectbox( | |
"Choose the pretrained model", | |
["t5_small_wikiSQL"], | |
help="For more info about the models visit: https://sparknlp.org/models" | |
) | |
# Set up the page layout | |
title, sub_title = ( | |
'SQL Query Generation', | |
'This demo shows how to generate SQL code from natural language text.' | |
) | |
st.markdown(f'<div class="main-title">{title}</div>', unsafe_allow_html=True) | |
st.write(sub_title) | |
# Reference notebook link in sidebar | |
link = """ | |
<a href="https://colab.research.google.com/github/JohnSnowLabs/spark-nlp-workshop/blob/master/tutorials/streamlit_notebooks/T5_SQL.ipynb"> | |
<img src="https://colab.research.google.com/assets/colab-badge.svg" style="zoom: 1.3" alt="Open In Colab"/> | |
</a> | |
""" | |
st.sidebar.markdown('Reference notebook:') | |
st.sidebar.markdown(link, unsafe_allow_html=True) | |
# Load examples | |
examples = [ | |
"How many customers have ordered more than 2 items?", | |
"How many players were with the school or club team La Salle?", | |
"When the scoring rank was 117, what was the best finish?", | |
"When the best finish was T69, how many people came in 2nd?", | |
"How many wins were there when the money list rank was 183?", | |
"When did the Metrostars have their first Rookie of the Year winner?", | |
"What college did the Rookie of the Year from the Columbus Crew attend?" | |
] | |
selected_text = st.selectbox("Select an example", examples) | |
custom_input = st.text_input("Try it with your own Sentence!") | |
text_to_analyze = custom_input if custom_input else selected_text | |
st.write('Text to be converted to SQL query:') | |
HTML_WRAPPER = """<div class="scroll entities" style="overflow-x: auto; border: 1px solid #e6e9ef; border-radius: 0.25rem; padding: 1rem; margin-bottom: 2.5rem; white-space:pre-wrap">{}</div>""" | |
st.markdown(HTML_WRAPPER.format(text_to_analyze), unsafe_allow_html=True) | |
# Initialize Spark and create pipeline | |
spark = init_spark() | |
pipeline = create_pipeline(model) | |
output = fit_data(pipeline, text_to_analyze) | |
# Display matched sentence | |
st.write("Generated Output:") | |
output_text = "".join(output[0][0]) | |
st.markdown(f'<div class="section-content">{output_text}</div>', unsafe_allow_html=True) |