|
import streamlit as st |
|
import sparknlp |
|
import os |
|
import pandas as pd |
|
|
|
from sparknlp.base import * |
|
from sparknlp.annotator import * |
|
from pyspark.ml import Pipeline |
|
from sparknlp.pretrained import PretrainedPipeline |
|
|
|
|
|
st.set_page_config( |
|
layout="wide", |
|
page_title="Spark NLP Demos App", |
|
initial_sidebar_state="auto" |
|
) |
|
|
|
|
|
st.markdown(""" |
|
<style> |
|
.main-title { |
|
font-size: 36px; |
|
color: #4A90E2; |
|
font-weight: bold; |
|
text-align: center; |
|
} |
|
.section p, .section ul { |
|
color: #666666; |
|
} |
|
</style> |
|
""", unsafe_allow_html=True) |
|
|
|
|
|
@st.cache_resource |
|
def init_spark(): |
|
return sparknlp.start() |
|
|
|
|
|
@st.cache_resource |
|
def create_pipeline(year, month, day): |
|
document_assembler = DocumentAssembler()\ |
|
.setInputCol("text")\ |
|
.setOutputCol("document") |
|
|
|
sentence_detector = SentenceDetector()\ |
|
.setInputCols(["document"])\ |
|
.setOutputCol("sentence") |
|
|
|
date_matcher = DateMatcher() \ |
|
.setInputCols(['sentence'])\ |
|
.setOutputCol("date")\ |
|
.setAnchorDateYear(year)\ |
|
.setAnchorDateMonth(month)\ |
|
.setAnchorDateDay(day) |
|
|
|
pipeline = Pipeline( |
|
stages=[ |
|
document_assembler, |
|
sentence_detector, |
|
date_matcher, |
|
]) |
|
|
|
return pipeline |
|
|
|
|
|
def fit_data(pipeline, data): |
|
empty_df = spark.createDataFrame([['']]).toDF('text') |
|
pipeline_model = pipeline.fit(empty_df) |
|
model = LightPipeline(pipeline_model) |
|
results = model.fullAnnotate(data) |
|
|
|
return results |
|
|
|
|
|
st.markdown('<div class="main-title">State-of-the-Art Date Detecting and normalization with Spark NLP</div>', unsafe_allow_html=True) |
|
st.write("") |
|
|
|
|
|
date = st.sidebar.date_input('Select reference date') |
|
|
|
|
|
link = """ |
|
<a href="https://colab.research.google.com/github/JohnSnowLabs/spark-nlp-workshop/blob/master/tutorials/streamlit_notebooks/DATE_MATCHER.ipynb"> |
|
<img src="https://colab.research.google.com/assets/colab-badge.svg" style="zoom: 1.3" alt="Open In Colab"/> |
|
</a> |
|
""" |
|
st.sidebar.title('') |
|
st.sidebar.markdown('Reference notebook:') |
|
st.sidebar.markdown(link, unsafe_allow_html=True) |
|
|
|
|
|
folder_path = f"inputs/date_matcher" |
|
examples = [ |
|
lines[1].strip() |
|
for filename in os.listdir(folder_path) |
|
if filename.endswith('.txt') |
|
for lines in [open(os.path.join(folder_path, filename), 'r', encoding='utf-8').readlines()] |
|
if len(lines) >= 2 |
|
] |
|
|
|
st.subheader("Automatically detect phrases expressing dates and normalize them with respect to a reference date.") |
|
selected_text = st.selectbox("Select an example", examples) |
|
custom_input = st.text_input("Try it with your own Sentence!") |
|
|
|
text_to_analyze = custom_input if custom_input else selected_text |
|
|
|
st.subheader('Full example text') |
|
st.write(text_to_analyze) |
|
|
|
|
|
spark = init_spark() |
|
pipeline = create_pipeline(date.year, date.month, date.day) |
|
output = fit_data(pipeline, text_to_analyze) |
|
|
|
|
|
st.subheader("Dates matched:") |
|
|
|
|
|
data = [] |
|
for result in output: |
|
sentences = result['sentence'] |
|
dates = result['date'] |
|
for date in dates: |
|
sent = sentences[int(date.metadata['sentence'])] |
|
data.append({ |
|
'text/chunk': sent.result[date.begin:date.end+1], |
|
'mapped_date': date.result |
|
}) |
|
|
|
df = pd.DataFrame(data) |
|
df.index += 1 |
|
st.dataframe(df) |