abdullahmubeen10
commited on
Commit
•
377aeec
1
Parent(s):
6b6b259
Update Demo.py
Browse files
Demo.py
CHANGED
@@ -1,122 +1,122 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import sparknlp
|
3 |
-
import os
|
4 |
-
import pandas as pd
|
5 |
-
|
6 |
-
from sparknlp.base import *
|
7 |
-
from sparknlp.annotator import *
|
8 |
-
from pyspark.ml import Pipeline
|
9 |
-
from sparknlp.pretrained import PretrainedPipeline
|
10 |
-
from streamlit_tags import st_tags
|
11 |
-
|
12 |
-
# Page configuration
|
13 |
-
st.set_page_config(
|
14 |
-
layout="wide",
|
15 |
-
initial_sidebar_state="auto"
|
16 |
-
)
|
17 |
-
|
18 |
-
# CSS for styling
|
19 |
-
st.markdown("""
|
20 |
-
<style>
|
21 |
-
.main-title {
|
22 |
-
font-size: 36px;
|
23 |
-
color: #4A90E2;
|
24 |
-
font-weight: bold;
|
25 |
-
text-align: center;
|
26 |
-
}
|
27 |
-
.section {
|
28 |
-
background-color: #f9f9f9;
|
29 |
-
padding: 10px;
|
30 |
-
border-radius: 10px;
|
31 |
-
margin-top: 10px;
|
32 |
-
}
|
33 |
-
.section p, .section ul {
|
34 |
-
color: #666666;
|
35 |
-
}
|
36 |
-
</style>
|
37 |
-
""", unsafe_allow_html=True)
|
38 |
-
|
39 |
-
@st.cache_resource
|
40 |
-
def init_spark():
|
41 |
-
return sparknlp.start()
|
42 |
-
|
43 |
-
@st.cache_resource
|
44 |
-
def create_pipeline(model):
|
45 |
-
imageAssembler = ImageAssembler() \
|
46 |
-
.setInputCol("image") \
|
47 |
-
.setOutputCol("image_assembler")
|
48 |
-
|
49 |
-
imageClassifier = ConvNextForImageClassification \
|
50 |
-
.pretrained("image_classifier_convnext_tiny_224_local", "en") \
|
51 |
-
.setInputCols(["image_assembler"]) \
|
52 |
-
.setOutputCol("class")
|
53 |
-
|
54 |
-
pipeline = Pipeline(stages=[
|
55 |
-
return pipeline
|
56 |
-
|
57 |
-
def fit_data(pipeline, data):
|
58 |
-
empty_df = spark.createDataFrame([['']]).toDF('text')
|
59 |
-
model = pipeline.fit(empty_df)
|
60 |
-
light_pipeline = LightPipeline(model)
|
61 |
-
annotations_result = light_pipeline.fullAnnotateImage(data)
|
62 |
-
return annotations_result[0]['class'][0].result
|
63 |
-
|
64 |
-
def save_uploadedfile(uploadedfile):
|
65 |
-
filepath = os.path.join(IMAGE_FILE_PATH, uploadedfile.name)
|
66 |
-
with open(filepath, "wb") as f:
|
67 |
-
if hasattr(uploadedfile, 'getbuffer'):
|
68 |
-
f.write(uploadedfile.getbuffer())
|
69 |
-
else:
|
70 |
-
f.write(uploadedfile.read())
|
71 |
-
|
72 |
-
# Sidebar content
|
73 |
-
model_list = ['image_classifier_convnext_tiny_224_local']
|
74 |
-
model = st.sidebar.selectbox(
|
75 |
-
"Choose the pretrained model",
|
76 |
-
model_list,
|
77 |
-
help="For more info about the models visit: https://sparknlp.org/models"
|
78 |
-
)
|
79 |
-
|
80 |
-
# Set up the page layout
|
81 |
-
st.markdown(f'<div class="main-title">ConvNext For Image Classification</div>', unsafe_allow_html=True)
|
82 |
-
# st.markdown(f'<div class="section"><p>{sub_title}</p></div>', unsafe_allow_html=True)
|
83 |
-
|
84 |
-
# Reference notebook link in sidebar
|
85 |
-
link = """
|
86 |
-
<a href="https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/annotation/image/ConvNextForImageClassification.ipynb">
|
87 |
-
<img src="https://colab.research.google.com/assets/colab-badge.svg" style="zoom: 1.3" alt="Open In Colab"/>
|
88 |
-
</a>
|
89 |
-
"""
|
90 |
-
st.sidebar.markdown('Reference notebook:')
|
91 |
-
st.sidebar.markdown(link, unsafe_allow_html=True)
|
92 |
-
|
93 |
-
# Load examples
|
94 |
-
IMAGE_FILE_PATH = f"inputs"
|
95 |
-
image_files = sorted([file for file in os.listdir(IMAGE_FILE_PATH) if file.split('.')[-1]=='png' or file.split('.')[-1]=='jpg' or file.split('.')[-1]=='JPEG' or file.split('.')[-1]=='jpeg'])
|
96 |
-
|
97 |
-
img_options = st.selectbox("Select an image", image_files)
|
98 |
-
uploadedfile = st.file_uploader("Try it for yourself!")
|
99 |
-
|
100 |
-
if uploadedfile:
|
101 |
-
file_details = {"FileName":uploadedfile.name,"FileType":uploadedfile.type}
|
102 |
-
save_uploadedfile(uploadedfile)
|
103 |
-
selected_image = f"{IMAGE_FILE_PATH}/{uploadedfile.name}"
|
104 |
-
elif img_options:
|
105 |
-
selected_image = f"{IMAGE_FILE_PATH}/{img_options}"
|
106 |
-
|
107 |
-
st.subheader('Classified Image')
|
108 |
-
|
109 |
-
image_size = st.slider('Image Size', 400, 1000, value=400, step = 100)
|
110 |
-
|
111 |
-
try:
|
112 |
-
st.image(f"{IMAGE_FILE_PATH}/{selected_image}", width=image_size)
|
113 |
-
except:
|
114 |
-
st.image(selected_image, width=image_size)
|
115 |
-
|
116 |
-
st.subheader('Classification')
|
117 |
-
|
118 |
-
spark = init_spark()
|
119 |
-
Pipeline = create_pipeline(model)
|
120 |
-
output = fit_data(Pipeline, selected_image)
|
121 |
-
|
122 |
st.markdown(f'This document has been classified as : **{output}**')
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import sparknlp
|
3 |
+
import os
|
4 |
+
import pandas as pd
|
5 |
+
|
6 |
+
from sparknlp.base import *
|
7 |
+
from sparknlp.annotator import *
|
8 |
+
from pyspark.ml import Pipeline
|
9 |
+
from sparknlp.pretrained import PretrainedPipeline
|
10 |
+
from streamlit_tags import st_tags
|
11 |
+
|
12 |
+
# Page configuration
|
13 |
+
st.set_page_config(
|
14 |
+
layout="wide",
|
15 |
+
initial_sidebar_state="auto"
|
16 |
+
)
|
17 |
+
|
18 |
+
# CSS for styling
|
19 |
+
st.markdown("""
|
20 |
+
<style>
|
21 |
+
.main-title {
|
22 |
+
font-size: 36px;
|
23 |
+
color: #4A90E2;
|
24 |
+
font-weight: bold;
|
25 |
+
text-align: center;
|
26 |
+
}
|
27 |
+
.section {
|
28 |
+
background-color: #f9f9f9;
|
29 |
+
padding: 10px;
|
30 |
+
border-radius: 10px;
|
31 |
+
margin-top: 10px;
|
32 |
+
}
|
33 |
+
.section p, .section ul {
|
34 |
+
color: #666666;
|
35 |
+
}
|
36 |
+
</style>
|
37 |
+
""", unsafe_allow_html=True)
|
38 |
+
|
39 |
+
@st.cache_resource
|
40 |
+
def init_spark():
|
41 |
+
return sparknlp.start()
|
42 |
+
|
43 |
+
@st.cache_resource
|
44 |
+
def create_pipeline(model):
|
45 |
+
imageAssembler = ImageAssembler() \
|
46 |
+
.setInputCol("image") \
|
47 |
+
.setOutputCol("image_assembler")
|
48 |
+
|
49 |
+
imageClassifier = ConvNextForImageClassification \
|
50 |
+
.pretrained("image_classifier_convnext_tiny_224_local", "en") \
|
51 |
+
.setInputCols(["image_assembler"]) \
|
52 |
+
.setOutputCol("class")
|
53 |
+
|
54 |
+
pipeline = Pipeline(stages=[imageAssembler, imageClassifier])
|
55 |
+
return pipeline
|
56 |
+
|
57 |
+
def fit_data(pipeline, data):
|
58 |
+
empty_df = spark.createDataFrame([['']]).toDF('text')
|
59 |
+
model = pipeline.fit(empty_df)
|
60 |
+
light_pipeline = LightPipeline(model)
|
61 |
+
annotations_result = light_pipeline.fullAnnotateImage(data)
|
62 |
+
return annotations_result[0]['class'][0].result
|
63 |
+
|
64 |
+
def save_uploadedfile(uploadedfile):
|
65 |
+
filepath = os.path.join(IMAGE_FILE_PATH, uploadedfile.name)
|
66 |
+
with open(filepath, "wb") as f:
|
67 |
+
if hasattr(uploadedfile, 'getbuffer'):
|
68 |
+
f.write(uploadedfile.getbuffer())
|
69 |
+
else:
|
70 |
+
f.write(uploadedfile.read())
|
71 |
+
|
72 |
+
# Sidebar content
|
73 |
+
model_list = ['image_classifier_convnext_tiny_224_local']
|
74 |
+
model = st.sidebar.selectbox(
|
75 |
+
"Choose the pretrained model",
|
76 |
+
model_list,
|
77 |
+
help="For more info about the models visit: https://sparknlp.org/models"
|
78 |
+
)
|
79 |
+
|
80 |
+
# Set up the page layout
|
81 |
+
st.markdown(f'<div class="main-title">ConvNext For Image Classification</div>', unsafe_allow_html=True)
|
82 |
+
# st.markdown(f'<div class="section"><p>{sub_title}</p></div>', unsafe_allow_html=True)
|
83 |
+
|
84 |
+
# Reference notebook link in sidebar
|
85 |
+
link = """
|
86 |
+
<a href="https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/annotation/image/ConvNextForImageClassification.ipynb">
|
87 |
+
<img src="https://colab.research.google.com/assets/colab-badge.svg" style="zoom: 1.3" alt="Open In Colab"/>
|
88 |
+
</a>
|
89 |
+
"""
|
90 |
+
st.sidebar.markdown('Reference notebook:')
|
91 |
+
st.sidebar.markdown(link, unsafe_allow_html=True)
|
92 |
+
|
93 |
+
# Load examples
|
94 |
+
IMAGE_FILE_PATH = f"inputs"
|
95 |
+
image_files = sorted([file for file in os.listdir(IMAGE_FILE_PATH) if file.split('.')[-1]=='png' or file.split('.')[-1]=='jpg' or file.split('.')[-1]=='JPEG' or file.split('.')[-1]=='jpeg'])
|
96 |
+
|
97 |
+
img_options = st.selectbox("Select an image", image_files)
|
98 |
+
uploadedfile = st.file_uploader("Try it for yourself!")
|
99 |
+
|
100 |
+
if uploadedfile:
|
101 |
+
file_details = {"FileName":uploadedfile.name,"FileType":uploadedfile.type}
|
102 |
+
save_uploadedfile(uploadedfile)
|
103 |
+
selected_image = f"{IMAGE_FILE_PATH}/{uploadedfile.name}"
|
104 |
+
elif img_options:
|
105 |
+
selected_image = f"{IMAGE_FILE_PATH}/{img_options}"
|
106 |
+
|
107 |
+
st.subheader('Classified Image')
|
108 |
+
|
109 |
+
image_size = st.slider('Image Size', 400, 1000, value=400, step = 100)
|
110 |
+
|
111 |
+
try:
|
112 |
+
st.image(f"{IMAGE_FILE_PATH}/{selected_image}", width=image_size)
|
113 |
+
except:
|
114 |
+
st.image(selected_image, width=image_size)
|
115 |
+
|
116 |
+
st.subheader('Classification')
|
117 |
+
|
118 |
+
spark = init_spark()
|
119 |
+
Pipeline = create_pipeline(model)
|
120 |
+
output = fit_data(Pipeline, selected_image)
|
121 |
+
|
122 |
st.markdown(f'This document has been classified as : **{output}**')
|