abdullah63 commited on
Commit
6e99950
·
verified ·
1 Parent(s): 02368d0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +48 -53
app.py CHANGED
@@ -1,64 +1,59 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
  response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
 
 
 
 
 
40
  yield response
41
 
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
  demo = gr.ChatInterface(
47
  respond,
 
 
48
  additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
  ],
 
 
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ import torch
3
+ import torch.nn as nn
4
+ import sentencepiece as spm
5
+
6
+ # Set device
7
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
8
+
9
+ # Load tokenizers
10
+ sp_pseudo = spm.SentencePieceProcessor(model_file="pseudo.model")
11
+ sp_code = spm.SentencePieceProcessor(model_file="code.model")
12
+
13
+ # Load the full saved model (architecture + weights)
14
+ model_path = "pseudo-to-cpp-model.pth" # Adjust path as needed
15
+ model = torch.load(model_path, map_location=device)
16
+ model.eval()
17
+ model = model.to(device)
18
+
19
+
20
+ def generate_code(pseudocode, max_len):
21
+ """Generate C++ code from pseudocode with streaming output."""
22
+ model.eval()
23
+ src = torch.tensor([sp_pseudo.encode_as_ids(pseudocode)], dtype=torch.long, device=device)
24
+ tgt = torch.tensor([[2]], dtype=torch.long, device=device) # <bos_id>=2
25
+
26
+ generated_tokens = [2]
 
27
  response = ""
28
+ with torch.no_grad():
29
+ for _ in range(max_len):
30
+ output = model(src, tgt)
31
+ next_token = output[:, -1, :].argmax(-1).item()
32
+ generated_tokens.append(next_token)
33
+ tgt = torch.cat([tgt, torch.tensor([[next_token]], device=device)], dim=1)
34
+ response = sp_code.decode_ids(generated_tokens)
35
+ yield response # Yield partial output
36
+ if next_token == 5: # <END> = 5
37
+ break
38
+ yield response # Final output
39
+
40
+ def respond(message, history, max_tokens):
41
+ """Wrapper for Gradio interface."""
42
+ # Ignore history since it's one-shot generation
43
+ for response in generate_code(message, max_tokens):
44
  yield response
45
 
46
+ # Gradio interface
 
 
 
47
  demo = gr.ChatInterface(
48
  respond,
49
+ chatbot=gr.Chatbot(label="Pseudocode to C++ Generator"),
50
+ textbox=gr.Textbox(placeholder="Enter pseudocode (e.g., 'for i from 1 to n, print i')", label="Pseudocode"),
51
  additional_inputs=[
52
+ gr.Slider(minimum=10, maximum=1000, value=50, step=1, label="Max tokens"),
 
 
 
 
 
 
 
 
 
53
  ],
54
+ title="Pseudocode to C++ Transformer",
55
+ description="Convert pseudocode to C++ code using a custom transformer trained on the SPoC dataset.",
56
  )
57
 
 
58
  if __name__ == "__main__":
59
+ demo.launch()