Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,59 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
)
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
response = ""
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
40 |
yield response
|
41 |
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
demo = gr.ChatInterface(
|
47 |
respond,
|
|
|
|
|
48 |
additional_inputs=[
|
49 |
-
gr.
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
],
|
|
|
|
|
60 |
)
|
61 |
|
62 |
-
|
63 |
if __name__ == "__main__":
|
64 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import sentencepiece as spm
|
5 |
+
|
6 |
+
# Set device
|
7 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
8 |
+
|
9 |
+
# Load tokenizers
|
10 |
+
sp_pseudo = spm.SentencePieceProcessor(model_file="pseudo.model")
|
11 |
+
sp_code = spm.SentencePieceProcessor(model_file="code.model")
|
12 |
+
|
13 |
+
# Load the full saved model (architecture + weights)
|
14 |
+
model_path = "pseudo-to-cpp-model.pth" # Adjust path as needed
|
15 |
+
model = torch.load(model_path, map_location=device)
|
16 |
+
model.eval()
|
17 |
+
model = model.to(device)
|
18 |
+
|
19 |
+
|
20 |
+
def generate_code(pseudocode, max_len):
|
21 |
+
"""Generate C++ code from pseudocode with streaming output."""
|
22 |
+
model.eval()
|
23 |
+
src = torch.tensor([sp_pseudo.encode_as_ids(pseudocode)], dtype=torch.long, device=device)
|
24 |
+
tgt = torch.tensor([[2]], dtype=torch.long, device=device) # <bos_id>=2
|
25 |
+
|
26 |
+
generated_tokens = [2]
|
|
|
27 |
response = ""
|
28 |
+
with torch.no_grad():
|
29 |
+
for _ in range(max_len):
|
30 |
+
output = model(src, tgt)
|
31 |
+
next_token = output[:, -1, :].argmax(-1).item()
|
32 |
+
generated_tokens.append(next_token)
|
33 |
+
tgt = torch.cat([tgt, torch.tensor([[next_token]], device=device)], dim=1)
|
34 |
+
response = sp_code.decode_ids(generated_tokens)
|
35 |
+
yield response # Yield partial output
|
36 |
+
if next_token == 5: # <END> = 5
|
37 |
+
break
|
38 |
+
yield response # Final output
|
39 |
+
|
40 |
+
def respond(message, history, max_tokens):
|
41 |
+
"""Wrapper for Gradio interface."""
|
42 |
+
# Ignore history since it's one-shot generation
|
43 |
+
for response in generate_code(message, max_tokens):
|
44 |
yield response
|
45 |
|
46 |
+
# Gradio interface
|
|
|
|
|
|
|
47 |
demo = gr.ChatInterface(
|
48 |
respond,
|
49 |
+
chatbot=gr.Chatbot(label="Pseudocode to C++ Generator"),
|
50 |
+
textbox=gr.Textbox(placeholder="Enter pseudocode (e.g., 'for i from 1 to n, print i')", label="Pseudocode"),
|
51 |
additional_inputs=[
|
52 |
+
gr.Slider(minimum=10, maximum=1000, value=50, step=1, label="Max tokens"),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
],
|
54 |
+
title="Pseudocode to C++ Transformer",
|
55 |
+
description="Convert pseudocode to C++ code using a custom transformer trained on the SPoC dataset.",
|
56 |
)
|
57 |
|
|
|
58 |
if __name__ == "__main__":
|
59 |
+
demo.launch()
|