Spaces:
Runtime error
Runtime error
Commit
·
688353f
1
Parent(s):
8d1c352
Add app.py and others
Browse files- app.py +77 -0
- requirements.txt +1 -0
app.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import NougatProcessor, VisionEncoderDecoderModel
|
2 |
+
import gradio as gr
|
3 |
+
from pdf2image import convert_from_path
|
4 |
+
|
5 |
+
# Load the model and processor
|
6 |
+
processor = NougatProcessor.from_pretrained("MohamedRashad/arabic-small-nougat")
|
7 |
+
model = VisionEncoderDecoderModel.from_pretrained("MohamedRashad/arabic-small-nougat")
|
8 |
+
device = "cpu"
|
9 |
+
|
10 |
+
context_length = 2048
|
11 |
+
|
12 |
+
def extract_text_from_image(image):
|
13 |
+
"""
|
14 |
+
Extract text from PIL image
|
15 |
+
|
16 |
+
Args:
|
17 |
+
image (PIL.Image): Input image
|
18 |
+
|
19 |
+
Returns:
|
20 |
+
str: Extracted text from the image
|
21 |
+
"""
|
22 |
+
|
23 |
+
# prepare PDF image for the model
|
24 |
+
pixel_values = processor(image, return_tensors="pt").pixel_values
|
25 |
+
|
26 |
+
# generate transcription
|
27 |
+
outputs = model.generate(
|
28 |
+
pixel_values.to(device),
|
29 |
+
min_length=1,
|
30 |
+
max_new_tokens=context_length,
|
31 |
+
bad_words_ids=[[processor.tokenizer.unk_token_id]],
|
32 |
+
)
|
33 |
+
page_sequence = processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
34 |
+
page_sequence = processor.post_process_generation(page_sequence, fix_markdown=False)
|
35 |
+
return page_sequence
|
36 |
+
|
37 |
+
def extract_text_from_pdf(pdf_path, progress=gr.Progress()):
|
38 |
+
"""
|
39 |
+
Extract text from PDF
|
40 |
+
|
41 |
+
Args:
|
42 |
+
pdf_path (str): Path to the PDF file
|
43 |
+
progress (gr.Progress): Progress bar
|
44 |
+
|
45 |
+
Returns:
|
46 |
+
str: Extracted text from the PDF
|
47 |
+
"""
|
48 |
+
|
49 |
+
progress(0, desc="Starting...")
|
50 |
+
images = convert_from_path(pdf_path)
|
51 |
+
texts = []
|
52 |
+
for image in progress.tqdm(images):
|
53 |
+
extracted_text = extract_text_from_image(image)
|
54 |
+
texts.append(extracted_text)
|
55 |
+
|
56 |
+
return "\n".join(texts)
|
57 |
+
|
58 |
+
with gr.Blocks(title="Arabic Small Nougat") as demo:
|
59 |
+
gr.HTML("<h1 style='text-align: center'>Arabic End-to-End Structured OCR for textbooks</h1>")
|
60 |
+
|
61 |
+
with gr.Tab("Extract Text from Image"):
|
62 |
+
with gr.Row():
|
63 |
+
with gr.Column():
|
64 |
+
image = gr.Image(label="Input Image", type="pil")
|
65 |
+
image_submit_button = gr.Button(value="Submit", variant="primary")
|
66 |
+
output = gr.Markdown(label="Output Markdown", rtl=True)
|
67 |
+
image_submit_button.click(extract_text_from_image, inputs=[image], outputs=output)
|
68 |
+
|
69 |
+
with gr.Tab("Extract Text from PDF"):
|
70 |
+
with gr.Row():
|
71 |
+
with gr.Column():
|
72 |
+
pdf = gr.File(label="Input PDF", type="filepath")
|
73 |
+
pdf_submit_button = gr.Button(value="Submit", variant="primary")
|
74 |
+
output = gr.Markdown(label="Output Markdown", rtl=True)
|
75 |
+
pdf_submit_button.click(extract_text_from_pdf, inputs=[pdf], outputs=output)
|
76 |
+
|
77 |
+
demo.queue().launch(share=False)
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
pdf2image
|