Btr4k
Initial commit: YOLO detection app
fec6b6f
raw
history blame
6.05 kB
import gradio as gr
from ultralytics import YOLO
from PIL import Image
import cv2
import numpy as np
import tempfile
import os
# Load the YOLOv8 model
model = YOLO('yolov8n.pt')
def process_image(image):
results = model(image)
# Get detection information
boxes = results[0].boxes
detection_info = []
for box in boxes:
class_id = int(box.cls[0])
class_name = results[0].names[class_id]
confidence = float(box.conf[0])
detection_info.append(f"{class_name}: {confidence:.2%}")
return Image.fromarray(results[0].plot()), "\n".join(detection_info)
def process_video(video_path):
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as temp_file:
output_path = temp_file.name
cap = cv2.VideoCapture(video_path)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = int(cap.get(cv2.CAP_PROP_FPS))
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
detection_summary = []
frame_count = 0
try:
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
frame_count += 1
results = model(frame)
# Collect detection information for this frame
if frame_count % int(fps) == 0: # Sample every second
for box in results[0].boxes:
class_id = int(box.cls[0])
class_name = results[0].names[class_id]
detection_summary.append(class_name)
annotated_frame = results[0].plot()
out.write(annotated_frame)
finally:
cap.release()
out.release()
# Create summary of detected objects
if detection_summary:
from collections import Counter
counts = Counter(detection_summary)
summary = "\n".join([f"{obj}: {count} occurrences" for obj, count in counts.most_common()])
else:
summary = "No objects detected"
return output_path, summary
def detect_objects(media):
if media is None:
return None, None, None, "Please upload an image or video to begin detection.", gr.update(visible=True), gr.update(visible=False)
try:
if isinstance(media, str) and media.lower().endswith(('.mp4', '.avi', '.mov')):
output_video, detection_summary = process_video(media)
return (None, output_video, detection_summary,
"βœ… Video processing complete! Check the detection summary below.",
gr.update(visible=False), gr.update(visible=True))
else:
if isinstance(media, str):
image = cv2.imread(media)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
else:
image = media
processed_image, detection_info = process_image(image)
return (processed_image, None, detection_info,
"βœ… Image processing complete! Check the detections below.",
gr.update(visible=True), gr.update(visible=False))
except Exception as e:
return None, None, None, f"❌ Error: {str(e)}", gr.update(visible=False), gr.update(visible=False)
# Custom CSS for styling
custom_css = """
#app-container {
max-width: 1200px;
margin: 0 auto;
padding: 20px;
}
#logo-img {
display: block;
margin: 0 auto;
max-height: 100px;
margin-bottom: 20px;
}
.upload-box {
border: 2px dashed #ccc;
padding: 20px;
text-align: center;
border-radius: 8px;
background-color: #f8f9fa;
margin: 20px 0;
}
.results-container {
background-color: #ffffff;
border-radius: 8px;
padding: 15px;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
margin-top: 20px;
}
.detection-info {
background-color: #f8f9fa;
padding: 15px;
border-radius: 8px;
margin-top: 10px;
font-family: monospace;
}
"""
# Create Gradio interface
with gr.Blocks(css=custom_css) as demo:
with gr.Column(elem_id="app-container"):
# Logo and Header
gr.HTML(
"""
<div style="text-align: center; margin-bottom: 1rem">
<img src="logo-h.png" id="logo-img" alt="Logo">
</div>
"""
)
with gr.Column():
gr.Markdown("# πŸ” Object Detection")
# Upload Section
with gr.Column(elem_classes="upload-box"):
gr.Markdown("### πŸ“€ Upload your file")
input_media = gr.File(
label="Drag and drop or click to upload (Images: jpg, jpeg, png | Videos: mp4, avi, mov)",
file_types=["image", "video"]
)
# Status Message
status_text = gr.Textbox(
label="Status",
value="Waiting for upload...",
interactive=False
)
# Detection Information
detection_info = gr.Textbox(
label="Detection Results",
elem_classes="detection-info",
interactive=False
)
# Results Section
with gr.Column(elem_classes="results-container"):
with gr.Row():
with gr.Column(visible=False) as image_column:
output_image = gr.Image(label="Detected Objects")
with gr.Column(visible=False) as video_column:
output_video = gr.Video(label="Processed Video")
# Handle file upload
input_media.upload(
fn=detect_objects,
inputs=[input_media],
outputs=[output_image, output_video, detection_info, status_text,
image_column, video_column]
)
if __name__ == "__main__":
demo.launch(share=True)