|
from os import listdir, path |
|
import numpy as np |
|
import scipy, cv2, os, sys, argparse |
|
import dlib, json, subprocess |
|
from tqdm import tqdm |
|
from glob import glob |
|
import torch |
|
|
|
sys.path.append('../') |
|
import audio |
|
import face_detection |
|
from models import Wav2Lip |
|
|
|
parser = argparse.ArgumentParser(description='Code to generate results on ReSyncED evaluation set') |
|
|
|
parser.add_argument('--mode', type=str, |
|
help='random | dubbed | tts', required=True) |
|
|
|
parser.add_argument('--filelist', type=str, |
|
help='Filepath of filelist file to read', default=None) |
|
|
|
parser.add_argument('--results_dir', type=str, help='Folder to save all results into', |
|
required=True) |
|
parser.add_argument('--data_root', type=str, required=True) |
|
parser.add_argument('--checkpoint_path', type=str, |
|
help='Name of saved checkpoint to load weights from', required=True) |
|
parser.add_argument('--pads', nargs='+', type=int, default=[0, 10, 0, 0], |
|
help='Padding (top, bottom, left, right)') |
|
|
|
parser.add_argument('--face_det_batch_size', type=int, |
|
help='Single GPU batch size for face detection', default=16) |
|
|
|
parser.add_argument('--wav2lip_batch_size', type=int, help='Batch size for Wav2Lip', default=128) |
|
parser.add_argument('--face_res', help='Approximate resolution of the face at which to test', default=180) |
|
parser.add_argument('--min_frame_res', help='Do not downsample further below this frame resolution', default=480) |
|
parser.add_argument('--max_frame_res', help='Downsample to at least this frame resolution', default=720) |
|
|
|
|
|
args = parser.parse_args() |
|
args.img_size = 96 |
|
|
|
def get_smoothened_boxes(boxes, T): |
|
for i in range(len(boxes)): |
|
if i + T > len(boxes): |
|
window = boxes[len(boxes) - T:] |
|
else: |
|
window = boxes[i : i + T] |
|
boxes[i] = np.mean(window, axis=0) |
|
return boxes |
|
|
|
def rescale_frames(images): |
|
rect = detector.get_detections_for_batch(np.array([images[0]]))[0] |
|
if rect is None: |
|
raise ValueError('Face not detected!') |
|
h, w = images[0].shape[:-1] |
|
|
|
x1, y1, x2, y2 = rect |
|
|
|
face_size = max(np.abs(y1 - y2), np.abs(x1 - x2)) |
|
|
|
diff = np.abs(face_size - args.face_res) |
|
for factor in range(2, 16): |
|
downsampled_res = face_size // factor |
|
if min(h//factor, w//factor) < args.min_frame_res: break |
|
if np.abs(downsampled_res - args.face_res) >= diff: break |
|
|
|
factor -= 1 |
|
if factor == 1: return images |
|
|
|
return [cv2.resize(im, (im.shape[1]//(factor), im.shape[0]//(factor))) for im in images] |
|
|
|
|
|
def face_detect(images): |
|
batch_size = args.face_det_batch_size |
|
images = rescale_frames(images) |
|
|
|
while 1: |
|
predictions = [] |
|
try: |
|
for i in range(0, len(images), batch_size): |
|
predictions.extend(detector.get_detections_for_batch(np.array(images[i:i + batch_size]))) |
|
except RuntimeError: |
|
if batch_size == 1: |
|
raise RuntimeError('Image too big to run face detection on GPU') |
|
batch_size //= 2 |
|
print('Recovering from OOM error; New batch size: {}'.format(batch_size)) |
|
continue |
|
break |
|
|
|
results = [] |
|
pady1, pady2, padx1, padx2 = args.pads |
|
for rect, image in zip(predictions, images): |
|
if rect is None: |
|
raise ValueError('Face not detected!') |
|
|
|
y1 = max(0, rect[1] - pady1) |
|
y2 = min(image.shape[0], rect[3] + pady2) |
|
x1 = max(0, rect[0] - padx1) |
|
x2 = min(image.shape[1], rect[2] + padx2) |
|
|
|
results.append([x1, y1, x2, y2]) |
|
|
|
boxes = get_smoothened_boxes(np.array(results), T=5) |
|
results = [[image[y1: y2, x1:x2], (y1, y2, x1, x2), True] for image, (x1, y1, x2, y2) in zip(images, boxes)] |
|
|
|
return results, images |
|
|
|
def datagen(frames, face_det_results, mels): |
|
img_batch, mel_batch, frame_batch, coords_batch = [], [], [], [] |
|
|
|
for i, m in enumerate(mels): |
|
if i >= len(frames): raise ValueError('Equal or less lengths only') |
|
|
|
frame_to_save = frames[i].copy() |
|
face, coords, valid_frame = face_det_results[i].copy() |
|
if not valid_frame: |
|
continue |
|
|
|
face = cv2.resize(face, (args.img_size, args.img_size)) |
|
|
|
img_batch.append(face) |
|
mel_batch.append(m) |
|
frame_batch.append(frame_to_save) |
|
coords_batch.append(coords) |
|
|
|
if len(img_batch) >= args.wav2lip_batch_size: |
|
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch) |
|
|
|
img_masked = img_batch.copy() |
|
img_masked[:, args.img_size//2:] = 0 |
|
|
|
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255. |
|
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1]) |
|
|
|
yield img_batch, mel_batch, frame_batch, coords_batch |
|
img_batch, mel_batch, frame_batch, coords_batch = [], [], [], [] |
|
|
|
if len(img_batch) > 0: |
|
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch) |
|
|
|
img_masked = img_batch.copy() |
|
img_masked[:, args.img_size//2:] = 0 |
|
|
|
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255. |
|
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1]) |
|
|
|
yield img_batch, mel_batch, frame_batch, coords_batch |
|
|
|
def increase_frames(frames, l): |
|
|
|
while len(frames) < l: |
|
dup_every = float(l) / len(frames) |
|
|
|
final_frames = [] |
|
next_duplicate = 0. |
|
|
|
for i, f in enumerate(frames): |
|
final_frames.append(f) |
|
|
|
if int(np.ceil(next_duplicate)) == i: |
|
final_frames.append(f) |
|
|
|
next_duplicate += dup_every |
|
|
|
frames = final_frames |
|
|
|
return frames[:l] |
|
|
|
mel_step_size = 16 |
|
device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
print('Using {} for inference.'.format(device)) |
|
|
|
detector = face_detection.FaceAlignment(face_detection.LandmarksType._2D, |
|
flip_input=False, device=device) |
|
|
|
def _load(checkpoint_path): |
|
if device == 'cuda': |
|
checkpoint = torch.load(checkpoint_path) |
|
else: |
|
checkpoint = torch.load(checkpoint_path, |
|
map_location=lambda storage, loc: storage) |
|
return checkpoint |
|
|
|
def load_model(path): |
|
model = Wav2Lip() |
|
print("Load checkpoint from: {}".format(path)) |
|
checkpoint = _load(path) |
|
s = checkpoint["state_dict"] |
|
new_s = {} |
|
for k, v in s.items(): |
|
new_s[k.replace('module.', '')] = v |
|
model.load_state_dict(new_s) |
|
|
|
model = model.to(device) |
|
return model.eval() |
|
|
|
model = load_model(args.checkpoint_path) |
|
|
|
def main(): |
|
if not os.path.isdir(args.results_dir): os.makedirs(args.results_dir) |
|
|
|
if args.mode == 'dubbed': |
|
files = listdir(args.data_root) |
|
lines = ['{} {}'.format(f, f) for f in files] |
|
|
|
else: |
|
assert args.filelist is not None |
|
with open(args.filelist, 'r') as filelist: |
|
lines = filelist.readlines() |
|
|
|
for idx, line in enumerate(tqdm(lines)): |
|
video, audio_src = line.strip().split() |
|
|
|
audio_src = os.path.join(args.data_root, audio_src) |
|
video = os.path.join(args.data_root, video) |
|
|
|
command = 'ffmpeg -loglevel panic -y -i {} -strict -2 {}'.format(audio_src, '../temp/temp.wav') |
|
subprocess.call(command, shell=True) |
|
temp_audio = '../temp/temp.wav' |
|
|
|
wav = audio.load_wav(temp_audio, 16000) |
|
mel = audio.melspectrogram(wav) |
|
|
|
if np.isnan(mel.reshape(-1)).sum() > 0: |
|
raise ValueError('Mel contains nan!') |
|
|
|
video_stream = cv2.VideoCapture(video) |
|
|
|
fps = video_stream.get(cv2.CAP_PROP_FPS) |
|
mel_idx_multiplier = 80./fps |
|
|
|
full_frames = [] |
|
while 1: |
|
still_reading, frame = video_stream.read() |
|
if not still_reading: |
|
video_stream.release() |
|
break |
|
|
|
if min(frame.shape[:-1]) > args.max_frame_res: |
|
h, w = frame.shape[:-1] |
|
scale_factor = min(h, w) / float(args.max_frame_res) |
|
h = int(h/scale_factor) |
|
w = int(w/scale_factor) |
|
|
|
frame = cv2.resize(frame, (w, h)) |
|
full_frames.append(frame) |
|
|
|
mel_chunks = [] |
|
i = 0 |
|
while 1: |
|
start_idx = int(i * mel_idx_multiplier) |
|
if start_idx + mel_step_size > len(mel[0]): |
|
break |
|
mel_chunks.append(mel[:, start_idx : start_idx + mel_step_size]) |
|
i += 1 |
|
|
|
if len(full_frames) < len(mel_chunks): |
|
if args.mode == 'tts': |
|
full_frames = increase_frames(full_frames, len(mel_chunks)) |
|
else: |
|
raise ValueError('#Frames, audio length mismatch') |
|
|
|
else: |
|
full_frames = full_frames[:len(mel_chunks)] |
|
|
|
try: |
|
face_det_results, full_frames = face_detect(full_frames.copy()) |
|
except ValueError as e: |
|
continue |
|
|
|
batch_size = args.wav2lip_batch_size |
|
gen = datagen(full_frames.copy(), face_det_results, mel_chunks) |
|
|
|
for i, (img_batch, mel_batch, frames, coords) in enumerate(gen): |
|
if i == 0: |
|
frame_h, frame_w = full_frames[0].shape[:-1] |
|
|
|
out = cv2.VideoWriter('../temp/result.avi', |
|
cv2.VideoWriter_fourcc(*'DIVX'), fps, (frame_w, frame_h)) |
|
|
|
img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(device) |
|
mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(device) |
|
|
|
with torch.no_grad(): |
|
pred = model(mel_batch, img_batch) |
|
|
|
|
|
pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255. |
|
|
|
for pl, f, c in zip(pred, frames, coords): |
|
y1, y2, x1, x2 = c |
|
pl = cv2.resize(pl.astype(np.uint8), (x2 - x1, y2 - y1)) |
|
f[y1:y2, x1:x2] = pl |
|
out.write(f) |
|
|
|
out.release() |
|
|
|
vid = os.path.join(args.results_dir, '{}.mp4'.format(idx)) |
|
command = 'ffmpeg -loglevel panic -y -i {} -i {} -strict -2 -q:v 1 {}'.format('../temp/temp.wav', |
|
'../temp/result.avi', vid) |
|
subprocess.call(command, shell=True) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|