|
import torch |
|
from torch import nn |
|
from torch.nn import functional as F |
|
|
|
class Conv2d(nn.Module): |
|
def __init__(self, cin, cout, kernel_size, stride, padding, residual=False, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
self.conv_block = nn.Sequential( |
|
nn.Conv2d(cin, cout, kernel_size, stride, padding), |
|
nn.BatchNorm2d(cout) |
|
) |
|
self.act = nn.ReLU() |
|
self.residual = residual |
|
|
|
def forward(self, x): |
|
out = self.conv_block(x) |
|
if self.residual: |
|
out += x |
|
return self.act(out) |
|
|
|
class nonorm_Conv2d(nn.Module): |
|
def __init__(self, cin, cout, kernel_size, stride, padding, residual=False, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
self.conv_block = nn.Sequential( |
|
nn.Conv2d(cin, cout, kernel_size, stride, padding), |
|
) |
|
self.act = nn.LeakyReLU(0.01, inplace=True) |
|
|
|
def forward(self, x): |
|
out = self.conv_block(x) |
|
return self.act(out) |
|
|
|
class Conv2dTranspose(nn.Module): |
|
def __init__(self, cin, cout, kernel_size, stride, padding, output_padding=0, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
self.conv_block = nn.Sequential( |
|
nn.ConvTranspose2d(cin, cout, kernel_size, stride, padding, output_padding), |
|
nn.BatchNorm2d(cout) |
|
) |
|
self.act = nn.ReLU() |
|
|
|
def forward(self, x): |
|
out = self.conv_block(x) |
|
return self.act(out) |
|
|