scrapp_yf / app.py
abdouramandalil's picture
Create app.py
4a55bf3 verified
raw
history blame
2.56 kB
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import base64
import yfinance as yf
import streamlit as st
st.set_option('deprecation.showPyplotGlobalUse', False)
st.title('Scrapping Yahoo Finance App')
st.markdown("""
This app retrieves the list of the S&P 500 (from Wikipedia) and its corresponding stock closing price (year-to-date)!
* Python libraries: base64, pandas, streamlit, numpy, matplotlib, seaborn
* Data source: [Wikipedia](https://en.wikipedia.org/wiki/List_of_S%26P_500_companies).
""")
st.sidebar.header('User Input Features')
#Scrappage des donnees sur Wikipedia
@st.cache_data
def load_data():
url = "https://en.wikipedia.org/wiki/List_of_S%26P_500_companies"
html = pd.read_html(url,header= 0)
df = html[0]
return df
df = load_data()
sector = df.groupby('GICS Sector')
#Sidebar - Sector Selection
sorted_sector_unique = sorted(df['GICS Sector'].unique())
selected_sector = st.sidebar.multiselect('Sector',sorted_sector_unique)
#Filtering datas
df_selected_sector = df[(df['GICS Sector'].isin(selected_sector))]
st.header('Display companies in Selected sector')
st.write('Data Dimension: ' + str(df_selected_sector.shape[0]) + ' rows and ' + str(df_selected_sector.shape[1]) + ' columns.')
st.dataframe(df_selected_sector)
#Download des datas selectionnees dans le sidebar
def filedownload(df):
csv = df.to_csv(index=False)
b64 = base64.b64encode(csv.encode()).decode() # strings <-> bytes conversions
href = f'<a href="data:file/csv;base64,{b64}" download="SP500.csv">Download CSV File</a>'
return href
st.markdown(filedownload(df_selected_sector), unsafe_allow_html=True)
#Download datas correspondantes de yahoo finance
data = yf.download(
tickers = list(df_selected_sector[:10].Symbol),
period="ytd",
interval="1d",
group_by="ticker",
auto_adjust=True,
prepost=True,
threads=True,
proxy=None
)
#Plot Closing price of Selected Symbols
def price_plot(symbol):
df = pd.DataFrame(data[symbol].Close)
df['Date'] = df.index
plt.fill_between(df.Date, df.Close, color='skyblue', alpha=0.3)
plt.plot(df.Date, df.Close, color='skyblue', alpha=0.8)
plt.xticks(rotation=90)
plt.title(symbol, fontweight='bold')
plt.xlabel('Date', fontweight='bold')
plt.ylabel('Closing Price', fontweight='bold')
return st.pyplot()
num_company = st.sidebar.slider('Number of companies',1,5)
if st.button('Show plots'):
st.header('Show Closing price')
for i in list(df_selected_sector.Symbol)[:num_company]:
price_plot(i)