Spaces:
Sleeping
Sleeping
import streamlit as st | |
import numpy as np | |
import pandas as pd | |
import time | |
import plotly.express as px | |
df = pd.read_csv('bank.csv') | |
st.set_page_config( | |
page_title = 'Real Time Data Science Dashboard', | |
page_icon = 'β ', | |
layout = 'wide' | |
) | |
#Dashboard Title | |
st.title('Real Time/ Live Data Sceince Dashboard') | |
#Selection sur le type de job | |
job_filter = st.selectbox('Select The Job',pd.unique(df['job'])) | |
#Filtrage du job | |
df = df[df["job"] == job_filter] | |
#Creer des KPI | |
avg_age = np.mean(df.age) | |
count_married = int(df[(df.marital == 'married')]['marital'].count()) | |
balance = np.mean(df.balance) | |
kp1,kp2,kp3 = st.columns(3) | |
kp1.metric(label='Age β³',value = round(avg_age),delta = round(avg_age)-10) | |
kp2.metric(label="Married Count π",value = int(count_married),delta=-10+count_married) | |
kp3.metric(label="A/C Balanc $",value = f"$ {round(balance,2)}" | |
,delta = -round(balance/count_married)*100) | |
fig_col1,fig_col2 = st.columns(2) | |
with fig_col1: | |
st.markdown("### First Chart") | |
fig1 = px.density_heatmap(data_frame=df,y='age',x='marital') | |
st.write(fig1) | |
with fig_col2: | |
st.markdown("### Second Chart") | |
fig2 = px.histogram(data_frame = df,x='age') | |
st.write(fig2) | |
st.markdown("### Detailed Data view") | |
st.dataframe(df) | |
#time.sleep(1) | |