Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 3 |
+
from PIL import Image
|
| 4 |
+
import torch
|
| 5 |
+
|
| 6 |
+
# Load the smaller StarVector model (lighter, runs fine on free Hugging Face hardware)
|
| 7 |
+
model_id = "starvector/starvector-1b-im2svg"
|
| 8 |
+
|
| 9 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 10 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16)
|
| 11 |
+
|
| 12 |
+
def convert_to_svg(image):
|
| 13 |
+
# Prepare the image and run inference
|
| 14 |
+
inputs = tokenizer(image, return_tensors="pt")
|
| 15 |
+
outputs = model.generate(**inputs, max_new_tokens=1024)
|
| 16 |
+
svg_code = tokenizer.decode(outputs[0])
|
| 17 |
+
return svg_code
|
| 18 |
+
|
| 19 |
+
demo = gr.Interface(
|
| 20 |
+
fn=convert_to_svg,
|
| 21 |
+
inputs=gr.Image(type="pil", label="Upload Image"),
|
| 22 |
+
outputs=gr.Code(language="svg", label="Generated SVG Code"),
|
| 23 |
+
title="StarVector Image → SVG Converter"
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
demo.launch()
|