abdalrahmanshahrour commited on
Commit
6acc00e
·
1 Parent(s): a4ded9c
Files changed (1) hide show
  1. app.py +37 -1
app.py CHANGED
@@ -1,3 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
 
3
- gr.Interface.load("models/abdalrahmanshahrour/questionanswering-v5").launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import tensorflow as tf
2
+
3
+ #!pip install transformers
4
+
5
+ from transformers import pipeline
6
+
7
+ # importing necessary libraries
8
+ from transformers import AutoTokenizer, TFAutoModelForQuestionAnswering
9
+
10
+
11
+ tokenizer = AutoTokenizer.from_pretrained("bert-large-uncased-whole-word-masking-finetuned-squad")
12
+ model = TFAutoModelForQuestionAnswering.from_pretrained("bert-large-uncased-whole-word-masking-finetuned-squad",return_dict=False)
13
+
14
+ nlp = pipeline("question-answering", model=model, tokenizer=tokenizer)
15
+
16
+ #!pip install gradio
17
  import gradio as gr
18
 
19
+ # creating the function
20
+ def func(context, question):
21
+ result = nlp(question = question, context=context)
22
+ return result['answer']
23
+
24
+ example_1 = "(1) My name is Abdalrahman Shahrour, I am a data scientist and AI engineer"
25
+ qst_1 = "what is shahrour's profession?"
26
+
27
+ example_2 = "(2) Natural Language Processing (NLP) allows machines to break down and interpret human language. It's at the core of tools we use every day – from translation software, chatbots, spam filters, and search engines, to grammar correction software, voice assistants, and social media monitoring tools."
28
+ qst_2 = "What is NLP used for?"
29
+
30
+ # creating the interface
31
+ app = gr.Interface(fn=func, inputs = ['textbox', 'text'], outputs = 'textbox',
32
+ title = 'Question Answering bot', theme = 'dark-grass',
33
+ description = 'Input context and question, then get answers!',
34
+ examples = [[example_1, qst_1],
35
+ [example_2, qst_2]]
36
+ )
37
+
38
+ # launching the app
39
+ app.launch(inline=False)