Spaces:
Sleeping
Sleeping
| from langchain.chains import LLMChain | |
| from langchain_community.llms import OpenAI | |
| from langchain_core.prompts import PromptTemplate | |
| import streamlit as st | |
| mini_template = "You are an expert researcher. You\'ve talked to hundreds of {Target Audience}. \ | |
| Each person in the niche of {Target Audience} has certain struggles that make it easier to sell {My Course}. \ | |
| These are called Pain Points. There's a recipe for getting to the core of the Pain Points of {Target Audience}. \ | |
| Namely, answer each of these Questions 3 times, each getting deeper in the issues of {Target Audience}, \ | |
| appealing to their Emotions and uncertainties related to {My Course}. \ | |
| The Questions (answer each QUESTION 3 tiems in listicle format according to the instructions):\ | |
| 1. What keeps them awake at night?\ | |
| 2. What are they afraid of?\ | |
| 3. What are they angry about?\ | |
| " | |
| st.title("Saas Application") | |
| prompt = PromptTemplate( | |
| input_variables = ["Target Audience", "My Course"], | |
| template=mini_template, | |
| ) | |
| chain = LLMChain(llm=OpenAI(), prompt=prompt) | |
| #target_audience = "professionals looking for course on Power BI" | |
| #my_course = "Zero to Hero in PowerBI" | |
| target_audience = st.text_input("Enter your target audience") | |
| my_course = st.text_input("Enter your course name") | |
| if st.button("Get resposne"): | |
| if target_audience and my_course: | |
| with st.spinner("Generating response..."): | |
| with st.expander("Show prompt", expanded=False): | |
| st.info(prompt.template) | |
| answer = chain.run({"Target Audience": target_audience, "My Course":my_course}) | |
| st.write(answer) | |
| st.success("Hope you like the resposne.❤") | |
| elif target_audience: | |
| st.error("Enter your course name.") | |
| elif my_course: | |
| st.error("Enter your target audience.") | |
| else: | |
| st.error("No input detected, Please provide the desired information.") | |