Spaces:
Sleeping
Sleeping
import pandas as pd | |
from sklearn.model_selection import train_test_split | |
from sklearn.linear_model import LinearRegression | |
from sklearn.metrics import mean_squared_error, r2_score | |
from sklearn.pipeline import Pipeline | |
from sklearn.compose import ColumnTransformer | |
from sklearn.preprocessing import StandardScaler, OneHotEncoder | |
import streamlit as st | |
df = pd.read_excel('cars.xls') | |
x = df.drop('Price', axis=1) | |
y = df[['Price']] | |
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.20, random_state=42) | |
preprocessor = ColumnTransformer( | |
transformers=[ | |
('num', StandardScaler(), ['Mileage', 'Cylinder', 'Liter', 'Doors']), | |
('cat', OneHotEncoder(), ['Make', 'Model', 'Trim', 'Type']) | |
] | |
) | |
model = LinearRegression() | |
pipeline = Pipeline(steps=[('preprocessor', preprocessor), ('regressor', model)]) | |
pipeline.fit(x_train, y_train) | |
pred = pipeline.predict(x_test) | |
rmse = mean_squared_error(pred, y_test) ** 0.5 | |
r2 = r2_score(pred, y_test) | |
def price_pred(make, model, trim, mileage, car_type, cylinder, liter, doors, cruise, sound, leather): | |
input_data = pd.DataFrame({'Make': [make], | |
'Model': [model], | |
'Trim': [trim], | |
'Mileage': [mileage], | |
'Type': [car_type], | |
'Cylinder': [cylinder], | |
'Liter': [liter], | |
'Doors': [doors], | |
'Cruise': [cruise], | |
'Sound': [sound], | |
'Leather': [leather]}) | |
prediction = pipeline.predict(input_data)[0] | |
return prediction | |
def main(): | |
st.title('Car Price Prediction :red_car:') | |
st.write('Enter Car Details to predict the price') | |
make = st.selectbox('Make', df['Make'].unique()) | |
models = df[df['Make'] == make]['Model'].unique() | |
model = st.selectbox('Model', models) | |
trims = df[(df['Make'] == make) & (df['Model'] == model)]['Trim'].unique() | |
trim = st.selectbox('Trim', trims) | |
mileage = st.number_input('Mileage', 200, 60000) | |
car_type = st.selectbox('Type', df['Type'].unique()) | |
cylinder = st.selectbox('Cylinder', df['Cylinder'].unique()) | |
liter = st.number_input('Liter', 1, 6) | |
doors = st.selectbox('Doors', df['Doors'].unique()) | |
cruise = st.radio('Cruise', [0, 1]) | |
sound = st.radio('Sound', [0, 1]) | |
leather = st.radio('Leather', [0, 1]) | |
if st.button('Predict'): | |
price = price_pred(make, model, trim, mileage, car_type, cylinder, liter, doors, cruise, sound, leather) | |
price = float(price) # NumPy ndarray'ini float türüne dönüştürme | |
st.write(f'The Predicted Price is: ${price:.2f}') | |
if __name__ == '__main__': | |
main() |