Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,22 @@
|
|
1 |
import os
|
2 |
from getpass import getpass
|
3 |
import gradio as gr
|
|
|
|
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
from llama_index.node_parser import SemanticSplitterNodeParser
|
9 |
from llama_index.embeddings import OpenAIEmbedding
|
10 |
from llama_index.ingestion import IngestionPipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
# This will be the model we use both for Node parsing and for vectorization
|
13 |
embed_model = OpenAIEmbedding(api_key=openai_api_key)
|
@@ -24,10 +33,7 @@ pipeline = IngestionPipeline(
|
|
24 |
],
|
25 |
)
|
26 |
|
27 |
-
from pinecone.grpc import PineconeGRPC
|
28 |
-
from pinecone import ServerlessSpec
|
29 |
|
30 |
-
from llama_index.vector_stores import PineconeVectorStore
|
31 |
|
32 |
# Initialize connection to Pinecone
|
33 |
pc = PineconeGRPC(api_key=pinecone_api_key)
|
@@ -41,8 +47,6 @@ vector_store = PineconeVectorStore(pinecone_index=pinecone_index)
|
|
41 |
|
42 |
pinecone_index.describe_index_stats()
|
43 |
|
44 |
-
from llama_index import VectorStoreIndex
|
45 |
-
from llama_index.retrievers import VectorIndexRetriever
|
46 |
|
47 |
# Due to how LlamaIndex works here, if your Open AI API key was
|
48 |
# not set to an environment variable before, you have to set it at this point
|
@@ -55,7 +59,6 @@ vector_index = VectorStoreIndex.from_vector_store(vector_store=vector_store)
|
|
55 |
# Grab 5 search results
|
56 |
retriever = VectorIndexRetriever(index=vector_index, similarity_top_k=5)
|
57 |
|
58 |
-
from llama_index.query_engine import RetrieverQueryEngine
|
59 |
|
60 |
# Pass in your retriever from above, which is configured to return the top 5 results
|
61 |
query_engine = RetrieverQueryEngine(retriever=retriever)
|
|
|
1 |
import os
|
2 |
from getpass import getpass
|
3 |
import gradio as gr
|
4 |
+
from pinecone.grpc import PineconeGRPC
|
5 |
+
from pinecone import ServerlessSpec
|
6 |
|
7 |
+
from llama_index.vector_stores import PineconeVectorStore
|
8 |
+
from llama_index import VectorStoreIndex
|
9 |
+
from llama_index.retrievers import VectorIndexRetriever
|
10 |
from llama_index.node_parser import SemanticSplitterNodeParser
|
11 |
from llama_index.embeddings import OpenAIEmbedding
|
12 |
from llama_index.ingestion import IngestionPipeline
|
13 |
+
from llama_index.query_engine import RetrieverQueryEngine
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
pinecone_api_key = os.getenv("PINECONE_API_KEY")
|
18 |
+
openai_api_key = os.getenv("OPENAI_API_KEY")
|
19 |
+
|
20 |
|
21 |
# This will be the model we use both for Node parsing and for vectorization
|
22 |
embed_model = OpenAIEmbedding(api_key=openai_api_key)
|
|
|
33 |
],
|
34 |
)
|
35 |
|
|
|
|
|
36 |
|
|
|
37 |
|
38 |
# Initialize connection to Pinecone
|
39 |
pc = PineconeGRPC(api_key=pinecone_api_key)
|
|
|
47 |
|
48 |
pinecone_index.describe_index_stats()
|
49 |
|
|
|
|
|
50 |
|
51 |
# Due to how LlamaIndex works here, if your Open AI API key was
|
52 |
# not set to an environment variable before, you have to set it at this point
|
|
|
59 |
# Grab 5 search results
|
60 |
retriever = VectorIndexRetriever(index=vector_index, similarity_top_k=5)
|
61 |
|
|
|
62 |
|
63 |
# Pass in your retriever from above, which is configured to return the top 5 results
|
64 |
query_engine = RetrieverQueryEngine(retriever=retriever)
|