Update app.py
Browse files
app.py
CHANGED
@@ -1,73 +1,71 @@
|
|
1 |
-
|
2 |
import streamlit as st
|
3 |
-
|
4 |
-
from
|
5 |
-
from
|
|
|
|
|
6 |
from llama_index.embeddings import OpenAIEmbedding
|
7 |
from llama_index.ingestion import IngestionPipeline
|
8 |
-
from
|
|
|
9 |
from llama_index.vector_stores import PineconeVectorStore
|
10 |
-
from llama_index
|
11 |
from llama_index.retrievers import VectorIndexRetriever
|
12 |
-
from
|
13 |
-
|
14 |
-
# Load environment variables
|
15 |
-
load_dotenv()
|
16 |
-
pinecone_api_key = os.getenv("PINECONE_API_KEY")
|
17 |
-
openai_api_key = os.getenv("OPENAI_API_KEY")
|
18 |
-
index_name = os.getenv("INDEX_NAME")
|
19 |
|
20 |
-
#
|
21 |
-
|
|
|
|
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
breakpoint_percentile_threshold=95,
|
34 |
-
embed_model=embed_model,
|
35 |
-
),
|
36 |
-
embed_model,
|
37 |
-
],
|
38 |
-
)
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
retriever = VectorIndexRetriever(index=vector_index, similarity_top_k=5)
|
43 |
-
query_engine = RetrieverQueryEngine(retriever=retriever)
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
st.session_state.chat_history = response['chat_history']
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
-
#
|
57 |
-
|
58 |
-
load_dotenv()
|
59 |
-
st.set_page_config(page_title="Chat with Annual Reports", page_icon=":books:")
|
60 |
-
st.write(css, unsafe_allow_html=True)
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
handle_userinput(user_question)
|
71 |
|
72 |
-
|
73 |
-
|
|
|
1 |
+
# Streamlit application
|
2 |
import streamlit as st
|
3 |
+
import os
|
4 |
+
from getpass import getpass
|
5 |
+
from transformers import pipeline
|
6 |
+
|
7 |
+
from llama_index.node_parser import SemanticSplitterNodeParser
|
8 |
from llama_index.embeddings import OpenAIEmbedding
|
9 |
from llama_index.ingestion import IngestionPipeline
|
10 |
+
from pinecone.grpc import PineconeGRPC
|
11 |
+
from pinecone import ServerlessSpec
|
12 |
from llama_index.vector_stores import PineconeVectorStore
|
13 |
+
from llama_index import VectorStoreIndex
|
14 |
from llama_index.retrievers import VectorIndexRetriever
|
15 |
+
from llama_index.query_engine import RetrieverQueryEngine
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
# Function to initialize the Pinecone and LlamaIndex setup
|
18 |
+
def initialize_pipeline():
|
19 |
+
pinecone_api_key = os.getenv("PINECONE_API_KEY")
|
20 |
+
openai_api_key = os.getenv("OPENAI_API_KEY")
|
21 |
|
22 |
+
embed_model = OpenAIEmbedding(api_key=openai_api_key)
|
23 |
+
pipeline = IngestionPipeline(
|
24 |
+
transformations=[
|
25 |
+
SemanticSplitterNodeParser(
|
26 |
+
buffer_size=1,
|
27 |
+
breakpoint_percentile_threshold=95,
|
28 |
+
embed_model=embed_model,
|
29 |
+
),
|
30 |
+
embed_model,
|
31 |
+
],
|
32 |
+
)
|
33 |
|
34 |
+
pc = PineconeGRPC(api_key=pinecone_api_key)
|
35 |
+
index_name = "anualreport"
|
36 |
+
pinecone_index = pc.Index(index_name)
|
37 |
+
vector_store = PineconeVectorStore(pinecone_index=pinecone_index)
|
38 |
+
pinecone_index.describe_index_stats()
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
+
if not os.getenv('OPENAI_API_KEY'):
|
41 |
+
os.environ['OPENAI_API_KEY'] = openai_api_key
|
|
|
|
|
42 |
|
43 |
+
vector_index = VectorStoreIndex.from_vector_store(vector_store=vector_store)
|
44 |
+
retriever = VectorIndexRetriever(index=vector_index, similarity_top_k=5)
|
45 |
+
query_engine = RetrieverQueryEngine(retriever=retriever)
|
|
|
46 |
|
47 |
+
return query_engine
|
48 |
+
|
49 |
+
# Streamlit UI
|
50 |
+
st.title("Chat with Annual Reports")
|
51 |
+
|
52 |
+
# Initialize the query engine
|
53 |
+
query_engine = initialize_pipeline()
|
54 |
+
|
55 |
+
# Conversation model using Hugging Face transformers
|
56 |
+
conversation_pipeline = pipeline("conversational", model="microsoft/DialoGPT-medium")
|
57 |
|
58 |
+
# User input
|
59 |
+
user_input = st.text_input("You: ", "")
|
|
|
|
|
|
|
60 |
|
61 |
+
if user_input:
|
62 |
+
# Query the vector DB
|
63 |
+
llm_query = query_engine.query(user_input)
|
64 |
+
response = llm_query.response
|
65 |
|
66 |
+
# Generate response using Hugging Face conversation model
|
67 |
+
conversation = conversation_pipeline([user_input, response])
|
68 |
+
bot_response = conversation[-1]["generated_text"]
|
|
|
69 |
|
70 |
+
# Display response
|
71 |
+
st.text_area("Bot: ", bot_response, height=200)
|