Update app.py
Browse files
app.py
CHANGED
@@ -1,92 +1,67 @@
|
|
1 |
import os
|
2 |
-
from getpass import getpass
|
3 |
-
import gradio as gr
|
4 |
-
import random
|
5 |
import time
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
from llama_index.node_parser import SemanticSplitterNodeParser
|
11 |
from llama_index.embeddings import OpenAIEmbedding
|
12 |
from llama_index.ingestion import IngestionPipeline
|
13 |
-
|
14 |
-
# This will be the model we use both for Node parsing and for vectorization
|
15 |
-
embed_model = OpenAIEmbedding(api_key=openai_api_key)
|
16 |
-
|
17 |
-
# Define the initial pipeline
|
18 |
-
pipeline = IngestionPipeline(
|
19 |
-
transformations=[
|
20 |
-
SemanticSplitterNodeParser(
|
21 |
-
buffer_size=1,
|
22 |
-
breakpoint_percentile_threshold=95,
|
23 |
-
embed_model=embed_model,
|
24 |
-
),
|
25 |
-
embed_model,
|
26 |
-
],
|
27 |
-
)
|
28 |
-
|
29 |
from pinecone.grpc import PineconeGRPC
|
30 |
-
from pinecone import ServerlessSpec
|
31 |
-
|
32 |
from llama_index.vector_stores import PineconeVectorStore
|
|
|
|
|
|
|
33 |
|
34 |
-
#
|
35 |
-
|
36 |
-
|
37 |
|
38 |
-
# Initialize
|
39 |
-
|
40 |
|
41 |
-
# Initialize
|
|
|
|
|
|
|
42 |
vector_store = PineconeVectorStore(pinecone_index=pinecone_index)
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
from llama_index import VectorStoreIndex
|
47 |
-
from llama_index.retrievers import VectorIndexRetriever
|
48 |
-
|
49 |
-
# Set the OpenAI API key if not already set
|
50 |
-
if not os.getenv('OPENAI_API_KEY'):
|
51 |
-
os.environ['OPENAI_API_KEY'] = openai_api_key
|
52 |
-
|
53 |
-
# Instantiate VectorStoreIndex object from our vector_store object
|
54 |
vector_index = VectorStoreIndex.from_vector_store(vector_store=vector_store)
|
55 |
-
|
56 |
-
# Grab 5 search results
|
57 |
retriever = VectorIndexRetriever(index=vector_index, similarity_top_k=5)
|
58 |
-
|
59 |
-
from llama_index.query_engine import RetrieverQueryEngine
|
60 |
-
|
61 |
-
# Pass in your retriever from above, which is configured to return the top 5 results
|
62 |
query_engine = RetrieverQueryEngine(retriever=retriever)
|
63 |
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
response = query_engine.query(query)
|
66 |
return response.response
|
67 |
|
68 |
-
#
|
69 |
-
|
70 |
-
return "", history + [[user_message, None]]
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
for character in bot_message:
|
76 |
-
history[-1][1] += character
|
77 |
-
time.sleep(0.01) # Reduced sleep time to make response appear faster
|
78 |
-
yield history
|
79 |
|
80 |
-
#
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
clear = gr.Button("Clear")
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
)
|
89 |
-
|
|
|
90 |
|
91 |
-
|
92 |
-
|
|
|
|
|
|
1 |
import os
|
|
|
|
|
|
|
2 |
import time
|
3 |
+
import streamlit as st
|
4 |
+
from getpass import getpass
|
5 |
+
from openai import OpenAI
|
|
|
6 |
from llama_index.node_parser import SemanticSplitterNodeParser
|
7 |
from llama_index.embeddings import OpenAIEmbedding
|
8 |
from llama_index.ingestion import IngestionPipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
from pinecone.grpc import PineconeGRPC
|
|
|
|
|
10 |
from llama_index.vector_stores import PineconeVectorStore
|
11 |
+
from llama_index import VectorStoreIndex
|
12 |
+
from llama_index.retrievers import VectorIndexRetriever
|
13 |
+
from llama_index.query_engine import RetrieverQueryEngine
|
14 |
|
15 |
+
# Set OpenAI API key from Streamlit secrets
|
16 |
+
openai_api_key = st.secrets["OPENAI_API_KEY"]
|
17 |
+
pinecone_api_key = st.secrets["PINECONE_API_KEY"]
|
18 |
|
19 |
+
# Initialize OpenAI client
|
20 |
+
client = OpenAI(api_key=openai_api_key)
|
21 |
|
22 |
+
# Initialize Pinecone connection
|
23 |
+
pc = PineconeGRPC(api_key=pinecone_api_key)
|
24 |
+
index_name = "annualreport"
|
25 |
+
pinecone_index = pc.Index(index_name)
|
26 |
vector_store = PineconeVectorStore(pinecone_index=pinecone_index)
|
27 |
|
28 |
+
# Initialize vector index and retriever
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
vector_index = VectorStoreIndex.from_vector_store(vector_store=vector_store)
|
|
|
|
|
30 |
retriever = VectorIndexRetriever(index=vector_index, similarity_top_k=5)
|
|
|
|
|
|
|
|
|
31 |
query_engine = RetrieverQueryEngine(retriever=retriever)
|
32 |
|
33 |
+
# Set up LlamaIndex embedding model and pipeline
|
34 |
+
embed_model = OpenAIEmbedding(api_key=openai_api_key)
|
35 |
+
pipeline = IngestionPipeline(
|
36 |
+
transformations=[
|
37 |
+
SemanticSplitterNodeParser(buffer_size=1, breakpoint_percentile_threshold=95, embed_model=embed_model),
|
38 |
+
embed_model,
|
39 |
+
],
|
40 |
+
)
|
41 |
+
|
42 |
+
def query_annual_report(query):
|
43 |
response = query_engine.query(query)
|
44 |
return response.response
|
45 |
|
46 |
+
# Streamlit app setup
|
47 |
+
st.title("ChatGPT-like Clone with Pinecone Integration")
|
|
|
48 |
|
49 |
+
# Initialize chat history
|
50 |
+
if "messages" not in st.session_state:
|
51 |
+
st.session_state.messages = []
|
|
|
|
|
|
|
|
|
52 |
|
53 |
+
# Display chat messages from history
|
54 |
+
for message in st.session_state.messages:
|
55 |
+
with st.chat_message(message["role"]):
|
56 |
+
st.markdown(message["content"])
|
|
|
57 |
|
58 |
+
# Accept user input
|
59 |
+
if prompt := st.chat_input("What is up?"):
|
60 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
61 |
+
with st.chat_message("user"):
|
62 |
+
st.markdown(prompt)
|
63 |
|
64 |
+
with st.chat_message("assistant"):
|
65 |
+
response = query_annual_report(prompt)
|
66 |
+
st.markdown(response)
|
67 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|