aarishshahmohsin commited on
Commit
9aa487e
·
1 Parent(s): caca740
Files changed (1) hide show
  1. app.py +89 -0
app.py ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from PIL import Image
3
+ from surya.ocr import run_ocr
4
+ from surya.model.detection.model import load_model as load_det_model, load_processor as load_det_processor
5
+ from surya.model.recognition.model import load_model as load_rec_model
6
+ from surya.model.recognition.processor import load_processor as load_rec_processor
7
+ import re
8
+ from transformers import AutoModel, AutoTokenizer
9
+ import torch
10
+ import tempfile
11
+ import os
12
+
13
+ # device = "cuda"
14
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
15
+ print(device)
16
+ got_model_name = "stepfun-ai/GOT-OCR2_0" if device == 'cuda' else "aarishshahmohsin/got_ocr_2"
17
+
18
+ det_processor, det_model = load_det_processor(), load_det_model()
19
+ det_model.to(device)
20
+ rec_model, rec_processor = load_rec_model(), load_rec_processor()
21
+ rec_model.to(device)
22
+
23
+ tokenizer = AutoTokenizer.from_pretrained(got_model_name, trust_remote_code=True, device_map=device)
24
+ got_model = AutoModel.from_pretrained(got_model_name, trust_remote_code=True, low_cpu_mem_usage=True, device_map=device, use_safetensors=True)
25
+ got_model = got_model.eval().to(device)
26
+
27
+ def extract_hindi(text):
28
+ hindi_pattern = re.compile(r'[\u0900-\u097F]+') # Unicode range for Devanagari script
29
+ hindi_words = hindi_pattern.findall(text)
30
+ return ' '.join(hindi_words)
31
+
32
+ def process_image(image):
33
+ with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
34
+ image.save(temp_file.name)
35
+ temp_file_path = temp_file.name
36
+
37
+ image = Image.open(temp_file_path)
38
+ image = image.convert("RGB")
39
+
40
+ langs = ["hi"]
41
+ surya_predictions = run_ocr([image], [langs], det_model, det_processor, rec_model, rec_processor)
42
+
43
+ surya_text_list = re.findall(r"text='(.*?)'", str(surya_predictions[0]))
44
+ surya_text = '\n'.join(surya_text_list)
45
+ surya_text = extract_hindi(surya_text)
46
+
47
+ got_res = got_model.chat(tokenizer, temp_file_path, ocr_type='ocr')
48
+
49
+ combined_text = f"<h2> Hindi Text (Surya OCR) </h2> <br>{surya_text}<br> <br> <h2> English Text (GOT OCR) </h2> <br> {got_res}"
50
+
51
+ if os.path.exists(temp_file_path):
52
+ os.remove(temp_file_path)
53
+
54
+ return combined_text
55
+
56
+ def highlight_search(text, query):
57
+ if query:
58
+ pattern = re.compile(re.escape(query), re.IGNORECASE)
59
+ highlighted_text = pattern.sub(lambda m: f"<span style='background-color: limegreen;'>{m.group(0)}</span>", text)
60
+ return highlighted_text
61
+ return text
62
+
63
+ with gr.Blocks() as ocr_interface:
64
+ gr.Markdown("# OCR Application (IIT Roorkee Assignment)")
65
+ gr.Markdown("Upload an image for OCR processing. This uses Surya OCR (for both Hindi) and GOT-OCR (for English). The results from both models will be concatenated.")
66
+
67
+ with gr.Row():
68
+ with gr.Column():
69
+ image_input = gr.Image(type="pil", label="Upload an Image")
70
+ run_ocr_button = gr.Button("Run OCR")
71
+
72
+ with gr.Column():
73
+ output_text = gr.HTML(label="Extracted Text")
74
+ query_input = gr.Textbox(label="Search in extracted text (optional)", placeholder="Type to search...")
75
+ search_button = gr.Button("Search")
76
+
77
+ def process_and_display(image):
78
+ combined_text = process_image(image)
79
+ return combined_text
80
+
81
+ def search_text(combined_text, query):
82
+ highlighted = highlight_search(combined_text, query)
83
+ return highlighted
84
+
85
+ run_ocr_button.click(fn=process_and_display, inputs=image_input, outputs=output_text)
86
+
87
+ search_button.click(fn=search_text, inputs=[output_text, query_input], outputs=output_text)
88
+
89
+ ocr_interface.launch()