Spaces:
Running
Running
from fastapi import FastAPI, HTTPException, Header | |
from fastapi.middleware.cors import CORSMiddleware | |
from fastapi.responses import StreamingResponse | |
from pydantic import BaseModel | |
import openai | |
from typing import List, Optional, Union | |
import logging | |
from itertools import cycle | |
import asyncio | |
import uvicorn | |
from app import config | |
import requests | |
from datetime import datetime, timezone | |
import json | |
import httpx | |
import uuid | |
import time | |
# 配置日志 | |
logging.basicConfig( | |
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s" | |
) | |
logger = logging.getLogger(__name__) | |
app = FastAPI() | |
# 允许跨域 | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=["*"], | |
allow_credentials=True, | |
allow_methods=["*"], | |
allow_headers=["*"], | |
) | |
# API密钥配置 | |
API_KEYS = config.settings.API_KEYS | |
# 创建一个循环迭代器 | |
key_cycle = cycle(API_KEYS) | |
# 创建两个独立的锁 | |
key_cycle_lock = asyncio.Lock() | |
failure_count_lock = asyncio.Lock() | |
# 添加key失败计数记录 | |
key_failure_counts = {key: 0 for key in API_KEYS} | |
MAX_FAILURES = 10 # 最大失败次数阈值 | |
MAX_RETRIES = 3 # 最大重试次数 | |
async def get_next_key(): | |
"""仅获取下一个key,不检查失败次数""" | |
async with key_cycle_lock: | |
return next(key_cycle) | |
async def is_key_valid(key): | |
"""检查key是否有效""" | |
async with failure_count_lock: | |
return key_failure_counts[key] < MAX_FAILURES | |
async def reset_failure_counts(): | |
"""重置所有key的失败计数""" | |
async with failure_count_lock: | |
for key in key_failure_counts: | |
key_failure_counts[key] = 0 | |
async def get_next_working_key(): | |
"""获取下一个可用的API key""" | |
initial_key = await get_next_key() | |
current_key = initial_key | |
while True: | |
if await is_key_valid(current_key): | |
return current_key | |
current_key = await get_next_key() | |
if current_key == initial_key: # 已经循环了一圈 | |
await reset_failure_counts() | |
return current_key | |
async def handle_api_failure(api_key): | |
"""处理API调用失败""" | |
async with failure_count_lock: | |
key_failure_counts[api_key] += 1 | |
if key_failure_counts[api_key] >= MAX_FAILURES: | |
logger.warning(f"API key {api_key} has failed {MAX_FAILURES} times, switching to next key") | |
# 在锁外获取新的key | |
return await get_next_working_key() | |
class ChatRequest(BaseModel): | |
messages: List[dict] | |
model: str = "gemini-1.5-flash-002" | |
temperature: Optional[float] = 0.7 | |
stream: Optional[bool] = False | |
tools: Optional[List[dict]] = [] | |
tool_choice: Optional[str] = "auto" | |
class EmbeddingRequest(BaseModel): | |
input: Union[str, List[str]] | |
model: str = "text-embedding-004" | |
encoding_format: Optional[str] = "float" | |
async def verify_authorization(authorization: str = Header(None)): | |
if not authorization: | |
logger.error("Missing Authorization header") | |
raise HTTPException(status_code=401, detail="Missing Authorization header") | |
if not authorization.startswith("Bearer "): | |
logger.error("Invalid Authorization header format") | |
raise HTTPException( | |
status_code=401, detail="Invalid Authorization header format" | |
) | |
token = authorization.replace("Bearer ", "") | |
if token not in config.settings.ALLOWED_TOKENS: | |
logger.error("Invalid token") | |
raise HTTPException(status_code=401, detail="Invalid token") | |
return token | |
def get_gemini_models(api_key): | |
base_url = "https://generativelanguage.googleapis.com/v1beta" | |
url = f"{base_url}/models?key={api_key}" | |
try: | |
response = requests.get(url) | |
if response.status_code == 200: | |
gemini_models = response.json() | |
return convert_to_openai_models_format(gemini_models) | |
else: | |
print(f"Error: {response.status_code}") | |
print(response.text) | |
return None | |
except requests.RequestException as e: | |
print(f"Request failed: {e}") | |
return None | |
def convert_to_openai_models_format(gemini_models): | |
openai_format = {"object": "list", "data": []} | |
for model in gemini_models.get("models", []): | |
openai_model = { | |
"id": model["name"].split("/")[-1], # 取最后一部分作为ID | |
"object": "model", | |
"created": int(datetime.now(timezone.utc).timestamp()), # 使用当前时间戳 | |
"owned_by": "google", # 假设所有Gemini模型都由Google拥有 | |
"permission": [], # Gemini API可能没有直接对应的权限信息 | |
"root": model["name"], | |
"parent": None, # Gemini API可能没有直接对应的父模型信息 | |
} | |
openai_format["data"].append(openai_model) | |
return openai_format | |
def convert_messages_to_gemini_format(messages): | |
"""Convert OpenAI message format to Gemini format""" | |
gemini_messages = [] | |
for message in messages: | |
gemini_message = { | |
"role": "user" if message["role"] == "user" else "model", | |
"parts": [{"text": message["content"]}], | |
} | |
gemini_messages.append(gemini_message) | |
return gemini_messages | |
def convert_gemini_response_to_openai(response, model, stream=False): | |
"""Convert Gemini response to OpenAI format""" | |
if stream: | |
# 处理流式响应 | |
chunk = response | |
if not chunk["candidates"]: | |
return None | |
return { | |
"id": "chatcmpl-" + str(uuid.uuid4()), | |
"object": "chat.completion.chunk", | |
"created": int(time.time()), | |
"model": model, | |
"choices": [ | |
{ | |
"index": 0, | |
"delta": { | |
"content": chunk["candidates"][0]["content"]["parts"][0]["text"] | |
}, | |
"finish_reason": None, | |
} | |
], | |
} | |
else: | |
# 处理普通响应 | |
return { | |
"id": "chatcmpl-" + str(uuid.uuid4()), | |
"object": "chat.completion", | |
"created": int(time.time()), | |
"model": model, | |
"choices": [ | |
{ | |
"index": 0, | |
"message": { | |
"role": "assistant", | |
"content": response["candidates"][0]["content"]["parts"][0][ | |
"text" | |
], | |
}, | |
"finish_reason": "stop", | |
} | |
], | |
"usage": {"prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, | |
} | |
async def list_models(authorization: str = Header(None)): | |
await verify_authorization(authorization) | |
api_key = await get_next_working_key() | |
logger.info(f"Using API key: {api_key}") | |
try: | |
response = get_gemini_models(api_key) | |
logger.info("Successfully retrieved models list") | |
return response | |
except Exception as e: | |
logger.error(f"Error listing models: {str(e)}") | |
raise HTTPException(status_code=500, detail=str(e)) | |
async def chat_completion(request: ChatRequest, authorization: str = Header(None)): | |
await verify_authorization(authorization) | |
api_key = await get_next_working_key() | |
logger.info(f"Chat completion request - Model: {request.model}") | |
retries = 0 | |
while retries < MAX_RETRIES: | |
try: | |
logger.info(f"Attempt {retries + 1} with API key: {api_key}") | |
if request.model in config.settings.MODEL_SEARCH: | |
# Gemini API调用部分 | |
gemini_messages = convert_messages_to_gemini_format(request.messages) | |
# 调用Gemini API | |
payload = { | |
"contents": gemini_messages, | |
"generationConfig": { | |
"temperature": request.temperature, | |
}, | |
"tools": [{"googleSearch": {}}], | |
} | |
if request.stream: | |
logger.info("Streaming response enabled") | |
async def generate(): | |
nonlocal api_key, retries | |
while retries < MAX_RETRIES: | |
try: | |
async with httpx.AsyncClient() as client: | |
stream_url = f"https://generativelanguage.googleapis.com/v1beta/models/{request.model}:streamGenerateContent?alt=sse&key={api_key}" | |
async with client.stream("POST", stream_url, json=payload) as response: | |
if response.status_code == 429: | |
logger.warning(f"Rate limit reached for key: {api_key}") | |
api_key = await handle_api_failure(api_key) | |
logger.info(f"Retrying with new API key: {api_key}") | |
retries += 1 | |
if retries >= MAX_RETRIES: | |
yield f"data: {json.dumps({'error': 'Max retries reached'})}\n\n" | |
break | |
continue | |
if response.status_code != 200: | |
logger.error(f"Error in streaming response: {response.status_code}") | |
yield f"data: {json.dumps({'error': f'API error: {response.status_code}'})}\n\n" | |
break | |
async for line in response.aiter_lines(): | |
if line.startswith("data: "): | |
try: | |
chunk = json.loads(line[6:]) | |
openai_chunk = convert_gemini_response_to_openai( | |
chunk, request.model, stream=True | |
) | |
if openai_chunk: | |
yield f"data: {json.dumps(openai_chunk)}\n\n" | |
except json.JSONDecodeError: | |
continue | |
yield "data: [DONE]\n\n" | |
return | |
except Exception as e: | |
logger.error(f"Stream error: {str(e)}") | |
api_key = await handle_api_failure(api_key) | |
retries += 1 | |
if retries >= MAX_RETRIES: | |
yield f"data: {json.dumps({'error': 'Max retries reached'})}\n\n" | |
break | |
continue | |
return StreamingResponse(content=generate(), media_type="text/event-stream") | |
else: | |
# 非流式响应 | |
async with httpx.AsyncClient() as client: | |
non_stream_url = f"https://generativelanguage.googleapis.com/v1beta/models/{request.model}:generateContent?key={api_key}" | |
response = await client.post(non_stream_url, json=payload) | |
gemini_response = response.json() | |
logger.info("Chat completion successful") | |
return convert_gemini_response_to_openai(gemini_response, request.model) | |
# OpenAI API调用部分 | |
client = openai.OpenAI(api_key=api_key, base_url=config.settings.BASE_URL) | |
response = client.chat.completions.create( | |
model=request.model, | |
messages=request.messages, | |
temperature=request.temperature, | |
stream=request.stream if hasattr(request, "stream") else False, | |
) | |
if hasattr(request, "stream") and request.stream: | |
logger.info("Streaming response enabled") | |
async def generate(): | |
for chunk in response: | |
yield f"data: {chunk.model_dump_json()}\n\n" | |
logger.info("Chat completion successful") | |
return StreamingResponse(content=generate(), media_type="text/event-stream") | |
logger.info("Chat completion successful") | |
return response | |
except Exception as e: | |
logger.error(f"Error in chat completion: {str(e)}") | |
api_key = await handle_api_failure(api_key) | |
retries += 1 | |
if retries >= MAX_RETRIES: | |
logger.error("Max retries reached, giving up") | |
raise HTTPException(status_code=500, detail="Max retries reached with all available API keys") | |
logger.info(f"Retrying with new API key: {api_key}") | |
continue | |
raise HTTPException(status_code=500, detail="Unexpected error in chat completion") | |
async def embedding(request: EmbeddingRequest, authorization: str = Header(None)): | |
await verify_authorization(authorization) | |
api_key = await get_next_working_key() | |
logger.info(f"Using API key: {api_key}") | |
try: | |
client = openai.OpenAI(api_key=api_key, base_url=config.settings.BASE_URL) | |
response = client.embeddings.create(input=request.input, model=request.model) | |
logger.info("Embedding successful") | |
return response | |
except Exception as e: | |
logger.error(f"Error in embedding: {str(e)}") | |
raise HTTPException(status_code=500, detail=str(e)) | |
async def health_check(): | |
logger.info("Health check endpoint called") | |
return {"status": "healthy"} | |
if __name__ == "__main__": | |
uvicorn.run(app, host="0.0.0.0", port=8000) | |