Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import logging | |
| import os | |
| from io import BytesIO | |
| import pdfplumber | |
| from langchain.text_splitter import CharacterTextSplitter | |
| from langchain_community.vectorstores import FAISS | |
| from sentence_transformers import SentenceTransformer | |
| from transformers import pipeline | |
| # Setup logging for Spaces | |
| logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') | |
| logger = logging.getLogger(__name__) | |
| # Lazy load models | |
| def load_embeddings_model(): | |
| logger.info("Loading embeddings model") | |
| try: | |
| return SentenceTransformer("all-MiniLM-L6-v2") | |
| except Exception as e: | |
| logger.error(f"Embeddings load error: {str(e)}") | |
| st.error(f"Embedding model error: {str(e)}") | |
| return None | |
| def load_qa_pipeline(): | |
| logger.info("Loading QA pipeline") | |
| try: | |
| return pipeline("text2text-generation", model="google/flan-t5-base", max_length=300) | |
| except Exception as e: | |
| logger.error(f"QA model load error: {str(e)}") | |
| st.error(f"QA model error: {str(e)}") | |
| return None | |
| # Process PDF | |
| def process_pdf(uploaded_file): | |
| logger.info("Processing PDF") | |
| try: | |
| text = "" | |
| with pdfplumber.open(BytesIO(uploaded_file.getvalue())) as pdf: | |
| for page in pdf.pages: | |
| extracted = page.extract_text() | |
| if extracted: | |
| text += extracted + "\n" | |
| if not text: | |
| # Optional OCR (uncomment if needed, requires pdf2image, pytesseract) | |
| # from pdf2image import convert_from_bytes | |
| # import pytesseract | |
| # images = convert_from_bytes(uploaded_file.getvalue()) | |
| # text = "".join(pytesseract.image_to_string(img) for img in images) | |
| if not text: | |
| raise ValueError("No text extracted from PDF") | |
| text_splitter = CharacterTextSplitter(separator="\n", chunk_size=600, chunk_overlap=150) | |
| chunks = text_splitter.split_text(text) | |
| embeddings_model = load_embeddings_model() | |
| if not embeddings_model: | |
| return None, text | |
| embeddings = [embeddings_model.encode(chunk) for chunk in chunks] | |
| vector_store = FAISS.from_embeddings(zip(chunks, embeddings), embeddings_model.encode) | |
| logger.info("PDF processed successfully") | |
| return vector_store, text | |
| except Exception as e: | |
| logger.error(f"PDF processing error: {str(e)}") | |
| st.error(f"PDF error: {str(e)}") | |
| return None, "" | |
| # Summarize PDF | |
| def summarize_pdf(text): | |
| logger.info("Generating summary") | |
| try: | |
| qa_pipeline = load_qa_pipeline() | |
| if not qa_pipeline: | |
| return "Summary model unavailable." | |
| # Split text for summarization if too long | |
| text_splitter = CharacterTextSplitter(separator="\n", chunk_size=1000, chunk_overlap=100) | |
| chunks = text_splitter.split_text(text) | |
| summaries = [] | |
| for chunk in chunks[:3]: # Limit to first 3 chunks for brevity | |
| prompt = f"Summarize this text in 60-80 words, highlighting key points:\n{chunk}" | |
| summary = qa_pipeline(prompt, max_length=100)[0]['generated_text'] | |
| summaries.append(summary.strip()) | |
| combined_summary = " ".join(summaries) | |
| if len(combined_summary.split()) > 200: | |
| combined_summary = " ".join(combined_summary.split()[:200]) | |
| logger.info("Summary generated") | |
| return combined_summary | |
| except Exception as e: | |
| logger.error(f"Summary error: {str(e)}") | |
| return f"Error summarizing: {str(e)}" | |
| # Answer question | |
| def answer_question(vector_store, query): | |
| logger.info(f"Processing query: {query}") | |
| try: | |
| if not vector_store: | |
| return "Please upload a PDF first." | |
| qa_pipeline = load_qa_pipeline() | |
| if not qa_pipeline: | |
| return "QA model unavailable." | |
| docs = vector_store.similarity_search(query, k=3) | |
| context = "\n".join(doc.page_content for doc in docs) | |
| prompt = f"Context: {context}\nQuestion: {query}\nAnswer concisely:" | |
| response = qa_pipeline(prompt)[0]['generated_text'] | |
| logger.info("Answer generated") | |
| return response.strip() | |
| except Exception as e: | |
| logger.error(f"Query error: {str(e)}") | |
| return f"Error answering: {str(e)}" | |
| # Streamlit UI | |
| try: | |
| st.set_page_config(page_title="Smart PDF Q&A", page_icon="π") | |
| st.title("Smart PDF Q&A") | |
| st.markdown(""" | |
| Upload a PDF to ask questions or get a summary (up to 200 words). Chat history is preserved. | |
| <style> | |
| .stChatMessage { border-radius: 10px; padding: 10px; margin: 5px; } | |
| .stChatMessage.user { background-color: #e6f3ff; } | |
| .stChatMessage.assistant { background-color: #f0f0f0; } | |
| </style> | |
| """, unsafe_allow_html=True) | |
| # Initialize session state | |
| if "messages" not in st.session_state: | |
| st.session_state.messages = [] | |
| if "vector_store" not in st.session_state: | |
| st.session_state.vector_store = None | |
| if "pdf_text" not in st.session_state: | |
| st.session_state.pdf_text = "" | |
| # PDF upload | |
| uploaded_file = st.file_uploader("Upload a PDF", type=["pdf"]) | |
| if uploaded_file: | |
| col1, col2 = st.columns([1, 1]) | |
| with col1: | |
| if st.button("Process PDF"): | |
| with st.spinner("Processing PDF..."): | |
| st.session_state.vector_store, st.session_state.pdf_text = process_pdf(uploaded_file) | |
| if st.session_state.vector_store: | |
| st.success("PDF processed! Ask questions or summarize.") | |
| st.session_state.messages = [] | |
| else: | |
| st.error("Failed to process PDF.") | |
| with col2: | |
| if st.button("Summarize PDF") and st.session_state.pdf_text: | |
| with st.spinner("Generating summary..."): | |
| summary = summarize_pdf(st.session_state.pdf_text) | |
| st.session_state.messages.append({"role": "assistant", "content": f"**Summary**: {summary}"}) | |
| st.markdown(f"**Summary**: {summary}") | |
| # Chat interface | |
| if st.session_state.vector_store: | |
| prompt = st.chat_input("Ask a question about the PDF:") | |
| if prompt: | |
| st.session_state.messages.append({"role": "user", "content": prompt}) | |
| with st.chat_message("user"): | |
| st.markdown(prompt) | |
| with st.chat_message("assistant"): | |
| with st.spinner("Generating answer..."): | |
| answer = answer_question(st.session_state.vector_store, prompt) | |
| st.markdown(answer) | |
| st.session_state.messages.append({"role": "assistant", "content": answer}) | |
| # Display chat history | |
| for message in st.session_state.messages: | |
| with st.chat_message(message["role"]): | |
| st.markdown(message["content"]) | |
| # Download chat history | |
| if st.session_state.messages: | |
| chat_text = "\n".join(f"{m['role'].capitalize()}: {m['content']}" for m in st.session_state.messages) | |
| st.download_button("Download Chat History", chat_text, "chat_history.txt") | |
| except Exception as e: | |
| logger.error(f"App initialization failed: {str(e)}") | |
| st.error(f"App failed to start: {str(e)}. Check Spaces logs or contact support.") |