Spaces:
Sleeping
Sleeping
from streamlit_extras.let_it_rain import rain | |
import streamlit as st | |
import pickle | |
import string | |
from nltk.corpus import stopwords | |
import nltk | |
from nltk.stem.porter import PorterStemmer | |
import sklearn | |
ps = PorterStemmer() | |
def example(): | |
rain( | |
emoji="❌", | |
font_size=64, | |
falling_speed=1.5, | |
animation_length="10", | |
) | |
def transform_Text(Text): | |
Text = Text.lower() | |
Text = nltk.word_tokenize(Text) | |
y = [] | |
for i in Text: | |
if i.isalnum(): | |
y.append(i) | |
Text = y[:] | |
y.clear() | |
for i in Text: | |
if i not in stopwords.words('english') and i not in string.punctuation: | |
y.append(i) | |
Text = y[:] | |
y.clear() | |
for i in Text: | |
y.append(ps.stem(i)) | |
return " ".join(y) | |
tfidf = pickle.load(open('vectorizer.pkl', 'rb')) | |
model = pickle.load(open('model.pkl', 'rb')) | |
st.title("SMS SPAM CLASSIFIER/CHECKER") | |
st.text("") | |
st.text("") | |
input_sms = st.text_area("Enter the message...or Copy and Paste the message to detect!! ",) | |
st.text("") | |
st.write(f'You wrote {len(input_sms)} characters.') | |
st.text("") | |
if st.button("Let's Check"): | |
transformed_sms = transform_Text(input_sms) | |
vector_input = tfidf.transform([transformed_sms]) | |
result = model.predict(vector_input)[0] | |
if result == 1: | |
st.warning("OH..NO! IT'S A SPAM !! BEAWARE!") | |
example() | |
else: | |
st.success("RELAX!! IT'S NOT A SPAM !") | |
st.balloons() | |