Spaces:
Runtime error
Runtime error
from io import StringIO | |
import gradio as gr | |
from utils import write_vtt | |
import whisper | |
#import os | |
#os.system("pip install git+https://github.com/openai/whisper.git") | |
LANGUAGES = [ | |
"English", | |
"Chinese", | |
"German", | |
"Spanish", | |
"Russian", | |
"Korean", | |
"French", | |
"Japanese", | |
"Portuguese", | |
"Turkish", | |
"Polish", | |
"Catalan", | |
"Dutch", | |
"Arabic", | |
"Swedish", | |
"Italian", | |
"Indonesian", | |
"Hindi", | |
"Finnish", | |
"Vietnamese", | |
"Hebrew", | |
"Ukrainian", | |
"Greek", | |
"Malay", | |
"Czech", | |
"Romanian", | |
"Danish", | |
"Hungarian", | |
"Tamil", | |
"Norwegian", | |
"Thai", | |
"Urdu", | |
"Croatian", | |
"Bulgarian", | |
"Lithuanian", | |
"Latin", | |
"Maori", | |
"Malayalam", | |
"Welsh", | |
"Slovak", | |
"Telugu", | |
"Persian", | |
"Latvian", | |
"Bengali", | |
"Serbian", | |
"Azerbaijani", | |
"Slovenian", | |
"Kannada", | |
"Estonian", | |
"Macedonian", | |
"Breton", | |
"Basque", | |
"Icelandic", | |
"Armenian", | |
"Nepali", | |
"Mongolian", | |
"Bosnian", | |
"Kazakh", | |
"Albanian", | |
"Swahili", | |
"Galician", | |
"Marathi", | |
"Punjabi", | |
"Sinhala", | |
"Khmer", | |
"Shona", | |
"Yoruba", | |
"Somali", | |
"Afrikaans", | |
"Occitan", | |
"Georgian", | |
"Belarusian", | |
"Tajik", | |
"Sindhi", | |
"Gujarati", | |
"Amharic", | |
"Yiddish", | |
"Lao", | |
"Uzbek", | |
"Faroese", | |
"Haitian Creole", | |
"Pashto", | |
"Turkmen", | |
"Nynorsk", | |
"Maltese", | |
"Sanskrit", | |
"Luxembourgish", | |
"Myanmar", | |
"Tibetan", | |
"Tagalog", | |
"Malagasy", | |
"Assamese", | |
"Tatar", | |
"Hawaiian", | |
"Lingala", | |
"Hausa", | |
"Bashkir", | |
"Javanese", | |
"Sundanese" | |
] | |
model_cache = dict() | |
def greet(modelName, languageName, uploadFile, microphoneData, task): | |
source = uploadFile if uploadFile is not None else microphoneData | |
selectedLanguage = languageName.lower() if len(languageName) > 0 else None | |
selectedModel = modelName if modelName is not None else "base" | |
model = model_cache.get(selectedModel, None) | |
if not model: | |
model = whisper.load_model(selectedModel) | |
model_cache[selectedModel] = model | |
result = model.transcribe(source, language=selectedLanguage, task=task) | |
segmentStream = StringIO() | |
write_vtt(result["segments"], file=segmentStream) | |
segmentStream.seek(0) | |
return result["text"], segmentStream.read() | |
demo = gr.Interface(fn=greet, description="Whisper is a general-purpose speech recognition model. It is trained on a large dataset of diverse audio and is also a multi-task model that can perform multilingual speech recognition as well as speech translation and language identification.", inputs=[ | |
gr.Dropdown(choices=["tiny", "base", "small", "medium", "large"], value="medium", label="Model"), | |
gr.Dropdown(choices=sorted(LANGUAGES), label="Language"), | |
gr.Audio(source="upload", type="filepath", label="Upload Audio"), | |
gr.Audio(source="microphone", type="filepath", label="Microphone Input"), | |
gr.Dropdown(choices=["transcribe", "translate"], label="Task"), | |
], outputs=[gr.Text(label="Transcription"), gr.Text(label="Segments")]) | |
demo.launch() |