Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
from transformers import MusicgenForConditionalGeneration, AutoProcessor
|
5 |
+
import scipy.io.wavfile
|
6 |
+
|
7 |
+
def generate_music(prompt, unconditional=False):
|
8 |
+
model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small")
|
9 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
10 |
+
model.to(device)
|
11 |
+
|
12 |
+
# Generate music
|
13 |
+
if unconditional:
|
14 |
+
unconditional_inputs = model.get_unconditional_inputs(num_samples=1)
|
15 |
+
audio_values = model.generate(**unconditional_inputs, do_sample=True, max_new_tokens=256)
|
16 |
+
else:
|
17 |
+
processor = AutoProcessor.from_pretrained("facebook/musicgen-small")
|
18 |
+
inputs = processor(text=prompt, padding=True, return_tensors="pt")
|
19 |
+
audio_values = model.generate(**inputs.to(device), do_sample=True, guidance_scale=3, max_new_tokens=256)
|
20 |
+
|
21 |
+
sampling_rate = model.config.audio_encoder.sampling_rate
|
22 |
+
audio_file = "musicgen_out.wav"
|
23 |
+
|
24 |
+
# Ensure audio_values is 1D and scale if necessary
|
25 |
+
audio_data = audio_values[0].cpu().numpy()
|
26 |
+
|
27 |
+
# Check if audio_data is in the correct format
|
28 |
+
if audio_data.ndim > 1:
|
29 |
+
audio_data = audio_data[0] # Take the first channel if stereo
|
30 |
+
|
31 |
+
# Scale audio data to 16-bit PCM format
|
32 |
+
audio_data = np.clip(audio_data, -1.0, 1.0) # Ensure values are in the range [-1, 1]
|
33 |
+
audio_data = (audio_data * 32767).astype(np.int16) # Scale to int16
|
34 |
+
|
35 |
+
# Save the generated audio
|
36 |
+
scipy.io.wavfile.write(audio_file, sampling_rate, audio_data)
|
37 |
+
|
38 |
+
return audio_file
|
39 |
+
|
40 |
+
def interface(prompt, unconditional):
|
41 |
+
audio_file = generate_music(prompt, unconditional)
|
42 |
+
return audio_file
|
43 |
+
|
44 |
+
with gr.Blocks() as demo:
|
45 |
+
gr.Markdown("# AI-Powered Music Generation")
|
46 |
+
|
47 |
+
with gr.Row():
|
48 |
+
prompt_input = gr.Textbox(label="Enter the Music Prompt")
|
49 |
+
unconditional_checkbox = gr.Checkbox(label="Generate Unconditional Music")
|
50 |
+
|
51 |
+
generate_button = gr.Button("Generate Music")
|
52 |
+
output_audio = gr.Audio(label="Output Music")
|
53 |
+
|
54 |
+
generate_button.click(
|
55 |
+
interface,
|
56 |
+
inputs=[prompt_input, unconditional_checkbox],
|
57 |
+
outputs=output_audio,
|
58 |
+
show_progress=True
|
59 |
+
)
|
60 |
+
|
61 |
+
demo.launch(share=True)
|