Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import torch | |
| import os | |
| from langchain.document_loaders import YoutubeLoader | |
| from langchain.text_splitter import RecursiveCharacterTextSplitter | |
| from langchain.vectorstores import Chroma | |
| from langchain.embeddings import HuggingFaceBgeEmbeddings | |
| from langchain.chains import RetrievalQA | |
| from langchain import HuggingFaceHub | |
| from urllib.parse import urlparse, parse_qs | |
| def extract_video_id(youtube_url): | |
| try: | |
| parsed_url = urlparse(youtube_url) | |
| query_params = parse_qs(parsed_url.query) | |
| video_id = query_params.get('v', [None])[0] | |
| return video_id | |
| except Exception as e: | |
| return f"Error extracting video ID: {e}" | |
| def process_video(youtube_url, question): | |
| video_id = extract_video_id(youtube_url) | |
| if not video_id: | |
| return 'Invalid YouTube URL' | |
| try: | |
| # Initialize the YouTube Loader | |
| loader = YoutubeLoader(video_id) | |
| documents = loader.load() | |
| # Process the documents | |
| text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100) | |
| documents = text_splitter.split_documents(documents) | |
| # Initialize Vector Store | |
| model_name = "BAAI/bge-base-en" | |
| encode_kwargs = {'normalize_embeddings': True} | |
| vectordb = Chroma.from_documents( | |
| documents, | |
| embedding=HuggingFaceBgeEmbeddings(model_name=model_name, | |
| model_kwargs={'device': 'cuda' if torch.cuda.is_available() else 'cpu'}, | |
| encode_kwargs=encode_kwargs) | |
| ) | |
| # Setup the QA Chain | |
| HUGGINGFACE_API_TOKEN = os.environ['HUGGINGFACE_API_TOKEN'] | |
| repo_id = "tiiuae/falcon-7b-instruct" | |
| qa_chain = RetrievalQA.from_chain_type( | |
| llm=HuggingFaceHub(huggingfacehub_api_token=HUGGINGFACE_API_TOKEN, | |
| repo_id=repo_id, | |
| model_kwargs={"temperature":0.1, "max_new_tokens":1000}), | |
| retriever=vectordb.as_retriever(), | |
| return_source_documents=False, | |
| verbose=False | |
| ) | |
| # Process the question | |
| llm_response = qa_chain(question) | |
| return llm_response['result'] | |
| except Exception as e: | |
| return f"Error processing video: {e}" | |
| iface = gr.Interface( | |
| fn=process_video, | |
| inputs=["text", "text"], | |
| outputs="text", | |
| title="YouTube Video AI Assistant", | |
| description="Enter a YouTube URL and a question to get AI-generated answers based on the video." | |
| ) | |
| if __name__ == "__main__": | |
| iface.launch(share=True) | |