Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
import os | |
from langchain.document_loaders import YoutubeLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.vectorstores import Chroma | |
from langchain.embeddings import HuggingFaceBgeEmbeddings | |
from langchain.chains import RetrievalQA | |
from langchain import HuggingFaceHub | |
from urllib.parse import urlparse, parse_qs | |
def extract_video_id(youtube_url): | |
try: | |
parsed_url = urlparse(youtube_url) | |
query_params = parse_qs(parsed_url.query) | |
video_id = query_params.get('v', [None])[0] | |
return video_id | |
except Exception as e: | |
return f"Error extracting video ID: {e}" | |
def process_video(youtube_url, question): | |
video_id = extract_video_id(youtube_url) | |
if not video_id: | |
return 'Invalid YouTube URL' | |
try: | |
# Initialize the YouTube Loader | |
loader = YoutubeLoader(video_id) | |
documents = loader.load() | |
# Process the documents | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100) | |
documents = text_splitter.split_documents(documents) | |
# Initialize Vector Store | |
model_name = "BAAI/bge-base-en" | |
encode_kwargs = {'normalize_embeddings': True} | |
vectordb = Chroma.from_documents( | |
documents, | |
embedding=HuggingFaceBgeEmbeddings(model_name=model_name, | |
model_kwargs={'device': 'cuda' if torch.cuda.is_available() else 'cpu'}, | |
encode_kwargs=encode_kwargs) | |
) | |
# Setup the QA Chain | |
HUGGINGFACE_API_TOKEN = os.environ['HUGGINGFACE_API_TOKEN'] | |
repo_id = "tiiuae/falcon-7b-instruct" | |
qa_chain = RetrievalQA.from_chain_type( | |
llm=HuggingFaceHub(huggingfacehub_api_token=HUGGINGFACE_API_TOKEN, | |
repo_id=repo_id, | |
model_kwargs={"temperature":0.1, "max_new_tokens":1000}), | |
retriever=vectordb.as_retriever(), | |
return_source_documents=False, | |
verbose=False | |
) | |
# Process the question | |
llm_response = qa_chain(question) | |
return llm_response['result'] | |
except Exception as e: | |
return f"Error processing video: {e}" | |
iface = gr.Interface( | |
fn=process_video, | |
inputs=["text", "text"], | |
outputs="text", | |
title="YouTube Video AI Assistant", | |
description="Enter a YouTube URL and a question to get AI-generated answers based on the video." | |
) | |
if __name__ == "__main__": | |
iface.launch(share=True) | |