Ashaar / app.py
aaaaaabbbbbbbdddddddduuuuulllll's picture
Duplicate from arbml/Ashaar
77a12fd
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import gradio as gr
from transformers import pipeline
from transformers import AutoTokenizer, AutoModelForCausalLM
from Ashaar.utils import get_output_df, get_highlighted_patterns_html
from Ashaar.bait_analysis import BaitAnalysis
from langs import *
import sys
import json
import argparse
arg_parser = argparse.ArgumentParser()
arg_parser.add_argument('--lang', type = str, default = 'ar')
args = arg_parser.parse_args()
lang = args.lang
if lang == 'ar':
TITLE = TITLE_ar
DESCRIPTION = DESCRIPTION_ar
textbox_trg_text = textbox_trg_text_ar
textbox_inp_text = textbox_inp_text_ar
btn_trg_text = btn_trg_text_ar
btn_inp_text = btn_inp_text_ar
css = """ #textbox{ direction: RTL;}"""
else:
TITLE = TITLE_en
DESCRIPTION = DESCRIPTION_en
textbox_trg_text = textbox_trg_text_en
textbox_inp_text = textbox_inp_text_en
btn_trg_text = btn_trg_text_en
btn_inp_text = btn_inp_text_en
css = ""
gpt_tokenizer = AutoTokenizer.from_pretrained('arbml/ashaar_tokenizer')
model = AutoModelForCausalLM.from_pretrained('arbml/Ashaar_model')
theme_to_token = json.load(open("extra/theme_tokens.json", "r"))
token_to_theme = {t:m for m,t in theme_to_token.items()}
meter_to_token = json.load(open("extra/meter_tokens.json", "r"))
token_to_meter = {t:m for m,t in meter_to_token.items()}
analysis = BaitAnalysis()
meter, theme, qafiyah = "", "", ""
def analyze(poem):
global meter,theme,qafiyah, generate_btn
shatrs = poem.split("\n")
baits = [' # '.join(shatrs[2*i:2*i+2]) for i in range(len(shatrs)//2)]
output = analysis.analyze(baits,override_tashkeel=True)
meter = output['meter']
qafiyah = output['qafiyah'][0]
theme = output['theme'][-1]
df = get_output_df(output)
return get_highlighted_patterns_html(df), gr.Button.update(interactive=True)
def generate(inputs, top_p = 3):
baits = inputs.split('\n')
if len(baits) % 2 !=0:
baits = baits[:-1]
poem = ' '.join(['<|bsep|> '+baits[i]+' <|vsep|> '+baits[i+1]+' </|bsep|>' for i in range(0, len(baits), 2)])
prompt = f"""
{meter_to_token[meter]} {qafiyah} {theme_to_token[theme]}
<|psep|>
{poem}
""".strip()
print(prompt)
encoded_input = gpt_tokenizer(prompt, return_tensors='pt')
output = model.generate(**encoded_input, max_length = 512, top_p = 3, do_sample=True)
result = ""
prev_token = ""
line_cnts = 0
for i, beam in enumerate(output[:, len(encoded_input.input_ids[0]):]):
if line_cnts >= 10:
break
for token in beam:
if line_cnts >= 10:
break
decoded = gpt_tokenizer.decode(token)
if 'meter' in decoded or 'theme' in decoded:
break
if decoded in ["<|vsep|>", "</|bsep|>"]:
result += "\n"
line_cnts+=1
elif decoded in ['<|bsep|>', '<|psep|>', '</|psep|>']:
pass
else:
result += decoded
prev_token = decoded
else:
break
# return theme+" "+ f"ู…ู† ุจุญุฑ {meter} ู…ุน ู‚ุงููŠุฉ ุจุญุฑ ({qafiyah})" + "\n" +result
return result, gr.Button.update(interactive=False)
examples = [
[
"""ุงู„ู‚ู„ุจ ุฃุนู„ู… ูŠุง ุนุฐูˆู„ ุจุฏุงุฆู‡
ูˆุฃุญู‚ ู…ู†ูƒ ุจุฌูู†ู‡ ูˆุจู…ุงุฆู‡"""
],
[
"""ุฑู…ุชู ุงู„ูุคุงุฏูŽ ู…ู„ูŠุญุฉ ุนุฐุฑุงุกู
ุจุณู‡ุงู…ู ู„ุญุธู ู…ุง ู„ู‡ู†ูŽู‘ ุฏูˆุงุกู"""
],
[
"""ุฃุฐูŽู„ูŽู‘ ุงู„ุญูุฑู’ุตู ูˆุงู„ุทูŽู‘ู…ูŽุนู ุงู„ุฑูู‘ู‚ุงุจูŽุง
ูˆู‚ูŽุฏ ูŠูŽุนููˆ ุงู„ูƒูŽุฑูŠู…ูุŒ ุฅุฐุง ุงุณุชูŽุฑูŽุงุจูŽุง"""
]
]
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
with gr.Row():
with gr.Column():
gr.HTML(TITLE)
gr.HTML(DESCRIPTION)
with gr.Row():
with gr.Column():
textbox_output = gr.Textbox(lines=10, label=textbox_trg_text, elem_id="textbox")
with gr.Column():
inputs = gr.Textbox(lines=10, label=textbox_inp_text, elem_id="textbox")
with gr.Row():
with gr.Column():
if lang == 'ar':
trg_btn = gr.Button(btn_trg_text, interactive=False)
else:
trg_btn = gr.Button(btn_trg_text)
with gr.Column():
if lang == 'ar':
inp_btn = gr.Button(btn_inp_text)
else:
inp_btn = gr.Button(btn_inp_text, interactive = False)
with gr.Row():
html_output = gr.HTML()
if lang == 'en':
gr.Examples(examples, textbox_output)
inp_btn.click(generate, inputs = textbox_output, outputs=[inputs, inp_btn])
trg_btn.click(analyze, inputs = textbox_output, outputs=[html_output,inp_btn])
else:
gr.Examples(examples, inputs)
trg_btn.click(generate, inputs = inputs, outputs=[textbox_output, trg_btn])
inp_btn.click(analyze, inputs = inputs, outputs=[html_output,trg_btn] )
# demo.launch(server_name = '0.0.0.0', share=True)
demo.launch()