Spaces:
Runtime error
Runtime error
#2022aug31 | |
#import gradio as gr | |
#def greet(name): | |
# return "Hello " + name + "!!" | |
#iface = gr.Interface(fn=greet, inputs="text", outputs="text") | |
#iface.launch() | |
# Setting up the Sketch Recognition Model | |
import torch | |
from torch import nn | |
model = nn.Sequential( | |
nn.Conv2d(1, 32, 3, padding='same'), | |
nn.ReLU(), | |
nn.MaxPool2d(2), | |
nn.Conv2d(32, 64, 3, padding='same'), | |
nn.ReLU(), | |
nn.MaxPool2d(2), | |
nn.Conv2d(64, 128, 3, padding='same'), | |
nn.ReLU(), | |
nn.MaxPool2d(2), | |
nn.Flatten(), | |
nn.Linear(1152, 256), | |
nn.ReLU(), | |
nn.Linear(256, len(LABELS)), | |
) | |
state_dict = torch.load('pytorch_model.bin', map_location='cpu') | |
model.load_state_dict(state_dict, strict=False) | |
model.eval() | |
# Defining a predict function | |
from pathlib import Path | |
LABELS = Path('class_names.txt').read_text().splitlines() | |
def predict(img): | |
x = torch.tensor(img, dtype=torch.float32).unsqueeze(0).unsqueeze(0) / 255. | |
with torch.no_grad(): | |
out = model(x) | |
probabilities = torch.nn.functional.softmax(out[0], dim=0) | |
values, indices = torch.topk(probabilities, 5) | |
confidences = {LABELS[i]: v.item() for i, v in zip(indices, values)} | |
return confidences | |
# Creating a Gradio Interface | |
import gradio as gr | |
gr.Interface(fn=predict, | |
inputs="sketchpad", | |
outputs="label", | |
live=True).launch() | |