a-v-bely
Update backend
41e198b
raw
history blame
12.2 kB
from nltk import edit_distance
from utilities.utils import answer_letter
from utilities_language_general.esp_constants import nlp
from utilities_language_general.esp_constants import FIX_LEMMA
from utilities_language_general.esp_constants import SIMILARITY_VALUES
from utilities_language_general.esp_constants import SIMILARITY_VALUES_bert
def prepare_target_words(target_words):
target_words = target_words.replace(' ,', ',').replace(',', ', ').replace(' ', ' ').split(', ')
return list(set(target_words))
def compute_frequency_dict(text: str) -> dict:
"""
Compute frequency dictionary of given text and return it sorted in descending order.
:param text: given text as string variable
:return: frequency dictionary {word: frequency} sorted in descending order
"""
freq_dict = {}
doc = nlp(text)
lemma_list_spacy = [token.lemma_ for token in doc]
for lemma in lemma_list_spacy:
if lemma.isalpha():
if lemma not in freq_dict.keys():
freq_dict[lemma] = 1
else:
freq_dict[lemma] += 1
return freq_dict
def get_tags(token: str):
return nlp(token)[0].morph.to_dict()
def fix_irregular_lemma(lemma, fixed_lemmas=FIX_LEMMA):
for key, value in fixed_lemmas.items():
if lemma in value:
return key
return lemma
def check_token(token, lemma_pos, model, current_minimum: set = None, check_allowed_pos: set = None,
check_allowed_dep: set = None) -> bool:
not_allowed_pos = {'PROPN', 'PUNCT', 'NUM'}
not_allowed_dep = {'cop', } # 'ROOT'
if lemma_pos == 'auto':
lemma_pos = f'{token.lemma_}_{token.pos_}'
if not token.text.isalpha():
return False
if current_minimum is not None and token.lemma_ not in current_minimum:
return False
if not model.has_index_for(lemma_pos):
return False
if (not token.is_oov
and not token.is_stop):
if check_allowed_pos is None and check_allowed_dep is None:
if token.pos_ not in not_allowed_pos and token.dep_ not in not_allowed_dep:
return True
return False
elif check_allowed_pos is not None and check_allowed_dep is None:
if token.pos_ in check_allowed_pos and token.dep_ not in not_allowed_dep:
return True
return False
elif check_allowed_pos is None and check_allowed_dep is not None:
if token.pos_ not in not_allowed_pos and token.dep_ in check_allowed_dep:
return True
return False
else:
if token.pos_ in check_allowed_pos and token.dep_ in check_allowed_dep:
return True
return False
else:
return False
def check_token_bert(token, current_minimum: set = None, check_allowed_pos: set = None,
check_allowed_dep: set = None) -> bool:
not_allowed_pos = {'PROPN', 'PUNCT', 'NUM'}
not_allowed_synt_dep = {'cop', } # 'ROOT'
if not token.text.isalpha():
return False
if current_minimum is not None and token.lemma_ not in current_minimum:
return False
if get_tags(token.text) is not None:
tags = get_tags(token.text)
else:
tags = None
if not token.is_stop and tags is not None:
if check_allowed_pos is None and check_allowed_dep is None:
if token.pos_ not in not_allowed_pos and token.dep_ not in not_allowed_synt_dep:
return True
return False
elif check_allowed_pos is not None and check_allowed_dep is None:
if token.pos_ in check_allowed_pos and token.dep_ not in not_allowed_synt_dep:
return True
return False
elif check_allowed_pos is None and check_allowed_dep is not None:
if token.pos_ not in not_allowed_pos and token.dep_ in check_allowed_dep:
return True
return False
else:
if token.pos_ in check_allowed_pos and token.dep_ in check_allowed_dep:
return True
return False
else:
return False
def get_distractors_from_model(model, lemma: str, pos: str, gender: str or None, global_distractors: set,
distractor_minimum: set, level_name: str, max_num_distractors: int,
max_length_ratio=5, min_edit_distance_ratio=0.5):
distractors = []
query = lemma if '_' in lemma else f'{lemma}_{pos}'
lemma = '_'.join(lemma.split('_')[::2])
if model.has_index_for(query):
candidates = model.most_similar(query, topn=max_num_distractors + 100)
else:
if query.count('_') == 1:
return None
query_raw_list = query.split('_')
query_parts = ['_'.join(query_raw_list[i:i + 2]) for i in range(len(query_raw_list))][::2]
query_vector = model.get_mean_vector(query_parts)
candidates = model.similar_by_vector(query_vector, topn=max_num_distractors + 100)
for candidate in candidates:
if candidate[0].count('_') == 1:
distractor_lemma, distractor_pos = candidate[0].split('_')
distractor_similarity = candidate[1]
candidate_gender = get_tags(distractor_lemma).get('Gender')
length_ratio = abs(len(lemma) - len(distractor_lemma))
condition = ((distractor_pos == pos
or (distractor_pos in ('VERB', 'ADJ', 'phrase') and pos in ('VERB', 'ADJ', 'phrase')))
and distractor_lemma != lemma
and distractor_similarity < SIMILARITY_VALUES[level_name]
and candidate_gender == gender
and length_ratio <= max_length_ratio
and distractor_lemma not in global_distractors
and edit_distance(lemma, distractor_lemma) / ((len(lemma) + len(distractor_lemma)) / 2) >
min_edit_distance_ratio)
if condition:
if distractor_minimum is not None:
if distractor_lemma in distractor_minimum:
distractors.append((distractor_lemma, distractor_similarity))
global_distractors.add(distractor_lemma)
else:
distractors.append((distractor_lemma, distractor_similarity))
global_distractors.add(distractor_lemma)
else:
if candidate[0].count('_') > 3 or pos in ('NOUN', 'ADJ', 'NUM'):
continue
d1_lemma, d1_pos, d2_lemma, d2_pos = candidate[0].split('_')
distractor_lemma = f'{d1_lemma}_{d2_lemma}'
distractor_similarity = candidate[1]
condition = (((d1_pos == pos or d2_pos == pos)
or (d1_pos in ('VERB', 'AUX', 'SCONJ', 'ADP')
and pos in ('phrase', 'VERB', 'AUX', 'SCONJ', 'ADP'))
or (d2_pos in ('VERB', 'AUX', 'SCONJ', 'ADP')
and pos in ('phrase', 'VERB', 'AUX', 'SCONJ', 'ADP')))
and candidate[0] != lemma
and distractor_lemma != lemma
and distractor_similarity < SIMILARITY_VALUES[level_name]
and distractor_lemma not in global_distractors)
if condition:
if distractor_minimum is not None:
if (distractor_lemma in distractor_minimum
or (d1_lemma in distractor_minimum and d2_lemma in distractor_minimum)):
distractors.append((candidate[0], distractor_similarity))
global_distractors.add(distractor_lemma)
else:
distractors.append((candidate[0], distractor_similarity))
global_distractors.add(distractor_lemma)
max_num_distractors = min(4, max_num_distractors) if max_num_distractors >= 4 else max_num_distractors
if len(distractors) < max_num_distractors:
return None
else:
return distractors
def get_distractors_from_model_bert(model, text_with_masked_task: str, lemma: str, pos: str, gender: str or None,
global_distractors: set, distractor_minimum: set, level_name: str,
max_num_distractors: int, max_length_ratio=5, min_edit_distance_ratio=0.5):
_distractors = []
try:
bert_candidates = [token for token in model(text_with_masked_task, top_k=max_num_distractors + 100)]
candidates = []
for candidate in bert_candidates:
if isinstance(candidate, list):
bert_candidates = candidate
continue
if candidate['token_str'].isalpha():
candidate_morph = nlp(candidate['token_str'])[0]
candidates.append((f"{candidate_morph.lemma_}_{candidate_morph.pos_}", candidate['score']))
except KeyError:
return None
for candidate_distractor in candidates:
if '_' in candidate_distractor[0]:
distractor_lemma, distractor_pos = candidate_distractor[0].split('_')
else:
candidate_morph = nlp(candidate_distractor[0])[0]
distractor_lemma, distractor_pos = candidate_morph.lemma_, candidate_morph.pos_
distractor_similarity = candidate_distractor[1]
candidate_gender = get_tags(distractor_lemma).get('Gender')
length_ratio = abs(len(lemma) - len(distractor_lemma))
if (((distractor_pos == pos)
or (pos in ('VERB', 'ADJ', 'phrase') and distractor_pos in ('VERB', 'ADJ', 'phrase')))
and distractor_lemma != lemma
and (len(_distractors) < max_num_distractors+100)
and (distractor_similarity < SIMILARITY_VALUES_bert[level_name])
and (candidate_gender == gender)
and (length_ratio <= max_length_ratio) # May be changed if case of phrases
and (distractor_lemma not in global_distractors)
and (edit_distance(lemma, distractor_lemma) # May be changed if case of phrases
/ ((len(lemma) + len(distractor_lemma)) / 2) > min_edit_distance_ratio)):
if distractor_minimum is not None:
if distractor_lemma in distractor_minimum:
_distractors.append((distractor_lemma, candidate_distractor[1]))
global_distractors.add(distractor_lemma)
else:
_distractors.append((distractor_lemma, candidate_distractor[1]))
num_distractors = min(4, max_num_distractors) if max_num_distractors >= 4 else max_num_distractors
if len(_distractors) < num_distractors:
return None
return _distractors
def prepare_tasks(input_variants):
TASKS_STUDENT = ''
TASKS_TEACHER = ''
KEYS_ONLY = ''
RAW_TASKS = []
RAW_KEYS_ONLY = []
RESULT_TASKS_STUDENT = []
TASKS_WITH_ANSWERS_L = []
KEYS = []
for num, item in enumerate(input_variants):
item = item[0]
answer = item[0]
variants = '\t'.join([i.lower() for i in item[1]])
current_answer_letter = answer_letter(answer=answer, variants=[i.lower() for i in item[1]])
RAW_TASKS.append((num + 1, variants))
RAW_KEYS_ONLY.append((num + 1, current_answer_letter.split(' ')[0]))
RESULT_TASKS_STUDENT.append(f"{num + 1}.\t{variants}")
TASKS_WITH_ANSWERS_L.append(f"{num + 1}.\t"
f"Ответ: {current_answer_letter}\n\t"
f"Варианты: {variants}")
KEYS.append(f"{num + 1}.\tОтвет: {current_answer_letter}")
for task in RESULT_TASKS_STUDENT:
TASKS_STUDENT += f'{task}\n'
for task in TASKS_WITH_ANSWERS_L:
TASKS_TEACHER += f'{task}\n'
for task in KEYS:
KEYS_ONLY += f'{task}\n'
return {'TASKS_STUDENT': TASKS_STUDENT, 'TASKS_TEACHER': TASKS_TEACHER,
'KEYS_ONLY': KEYS_ONLY, 'RAW_TASKS': RAW_TASKS, 'RAW_KEYS_ONLY': RAW_KEYS_ONLY}