Spaces:
Runtime error
Runtime error
Create inference.py
Browse files- inference.py +69 -0
inference.py
ADDED
|
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch.utils.data import DataLoader
|
| 3 |
+
import json
|
| 4 |
+
import os
|
| 5 |
+
|
| 6 |
+
from nets.model import Model
|
| 7 |
+
from Actor.actor import Actor
|
| 8 |
+
from dataloader import VRP_Dataset
|
| 9 |
+
|
| 10 |
+
# --- تحميل الإعدادات ---
|
| 11 |
+
with open('/data/params_saved.json', 'r') as f:
|
| 12 |
+
params = json.load(f)
|
| 13 |
+
|
| 14 |
+
# --- تعيين الجهاز ---
|
| 15 |
+
device = params['device']
|
| 16 |
+
dataset_path = params['dataset_path']
|
| 17 |
+
input_size = None # سيتم تحديده بعد تحميل البيانات
|
| 18 |
+
|
| 19 |
+
# --- تحميل نموذج مدرب ---
|
| 20 |
+
model_path = "/data/model_state_dict.pt"
|
| 21 |
+
if not os.path.exists(model_path):
|
| 22 |
+
raise FileNotFoundError(f"Model not found at {model_path}")
|
| 23 |
+
|
| 24 |
+
# --- إعداد بيانات عشوائية للاختبار ---
|
| 25 |
+
inference_dataset = VRP_Dataset(
|
| 26 |
+
size=1,
|
| 27 |
+
num_nodes=params['num_nodes'],
|
| 28 |
+
num_depots=params['num_depots'],
|
| 29 |
+
path=dataset_path,
|
| 30 |
+
device=device
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
input_size = inference_dataset.model_input_length()
|
| 34 |
+
|
| 35 |
+
# --- تحميل النموذج ---
|
| 36 |
+
model = Model(
|
| 37 |
+
input_size=input_size,
|
| 38 |
+
embedding_size=params["embedding_size"],
|
| 39 |
+
decoder_input_size=params["decoder_input_size"]
|
| 40 |
+
)
|
| 41 |
+
model.load_state_dict(torch.load(model_path, map_location=device))
|
| 42 |
+
|
| 43 |
+
# --- تهيئة الممثل (Actor) والـ NN Actor ---
|
| 44 |
+
actor = Actor(model=model,
|
| 45 |
+
num_movers=params['num_movers'],
|
| 46 |
+
num_neighbors_encoder=params['num_neighbors_encoder'],
|
| 47 |
+
num_neighbors_action=params['num_neighbors_action'],
|
| 48 |
+
device=device,
|
| 49 |
+
normalize=False)
|
| 50 |
+
actor.eval_mode()
|
| 51 |
+
|
| 52 |
+
nn_actor = Actor(model=None, num_movers=1, num_neighbors_action=1, device=device)
|
| 53 |
+
nn_actor.nearest_neighbors()
|
| 54 |
+
|
| 55 |
+
# --- تنفيذ الاستدلال على دفعة واحدة ---
|
| 56 |
+
dataloader = DataLoader(inference_dataset, batch_size=1, collate_fn=inference_dataset.collate)
|
| 57 |
+
for batch in dataloader:
|
| 58 |
+
with torch.no_grad():
|
| 59 |
+
actor.greedy_search()
|
| 60 |
+
actor_output = actor(batch)
|
| 61 |
+
total_time = actor_output['total_time'].item()
|
| 62 |
+
|
| 63 |
+
nn_output = nn_actor(batch)
|
| 64 |
+
nn_time = nn_output['total_time'].item()
|
| 65 |
+
|
| 66 |
+
print("\n===== INFERENCE RESULT =====")
|
| 67 |
+
print(f"Actor Model Total Cost: {total_time:.4f}")
|
| 68 |
+
print(f"Nearest Neighbor Cost : {nn_time:.4f}")
|
| 69 |
+
print(f"Improvement over NN : {(nn_time - total_time) / nn_time * 100:.2f}%")
|